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Machine Learning (ML) is one of the most exciting and dynamic areas of modern research
and application. The purpose of this review is to provide an introduction to the core
concepts and tools of machine learning in a manner easily understood and intuitive
to physicists. The review begins by covering fundamental concepts in ML and modern
statistics such as the bias-variance tradeoff, overfitting, regularization, and generalization
before moving on to more advanced topics in both supervised and unsupervised learning.
Topics covered in the review include ensemble models, deep learning and neural networks,
clustering and data visualization, energy-based models (including MaxEnt models and
Restricted Boltzmann Machines), and variational methods. Throughout, we emphasize
the many natural connections between ML and statistical physics. A notable aspect of
the review is the use of Jupyter notebooks to introduce modern ML /statistical packages
to readers using physics-inspired datasets (the Ising Model and Monte-Carlo simulations
of supersymmetric decays of proton-proton collisions). We conclude with an extended
outlook discussing possible uses of machine learning for furthering our understanding
of the physical world as well as open problems in ML where physicists maybe able to
contribute.
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I. INTRODUCTION

Machine Learning (ML), data science, and statistics
are fields that describe how to learn from, and make pre-
dictions about, data. The availability of big datasets is
a hallmark of modern science, including physics, where
data analysis has become an important component of di-
verse areas, such as experimental particle physics, ob-
servational astronomy and cosmology, condensed matter
physics, biophysics, and quantum computing. Moreover,
ML and data science are playing increasingly important
roles in many aspects of modern technology, ranging from
biotechnology to the engineering of self-driving cars and
smart devices. Therefore, having a thorough grasp of the
concepts and tools used in ML is an important skill that
is increasingly relevant in the physical sciences.

The purpose of this review is to serve as an introduc-
tion to foundational and state-of-the-art techniques in
ML and data science for physicists. The review seeks to
find a middle ground between a short overview and a full-
length textbook. While there exist many wonderful ML
textbooks ( )

; , ), they are lengthy and use
bpec1ahzed language that is often unfamiliar to physicists.
This review builds upon the considerable knowledge most
physicists already possess in statistical physics in order
to introduce many of the major ideas and techniques
used in modern ML. We take a physics-inspired peda-
gogical approach, emphasizing simple examples (e.g., re-
gression and clustering), before delving into more ad-
vanced topics. The intention of this review and the
accompanying Jupyter notebooks (available at https:
//physics.bu.edu/~pankajm/MLnotebooks.html) is to
give the reader the requisite background knowledge to
follow and apply these techniques to their own areas of
interest.

While this review is written with a physics background
in mind, we aim for it to be useful to anyone with some
background in statistical physics, and it is suitable for
both graduate students and researchers as well as ad-
vanced undergraduates. The review is based on an ad-
vanced topics graduate course taught at Boston Univer-
sity in Fall of 2016. As such, it assumes a level of familiar-

ity with several topics found in graduate physics curricula
(partition functions, statistical mechanics) and a fluency
in mathematical techniques such as linear algebra, multi-
variate calculus, variational methods, probability theory,
and Monte-Carlo methods. It also assumes a familiar-
ity with basic computer programming and algorithmic
design.

A. What is Machine Learning?

Most physicists learn the basics of classical statistics
early on in undergraduate laboratory courses. Classical
statistics is primarily concerned with how to use data
to estimate the value of an unknown quantity. For in-
stance, estimating the speed of light using measurements
obtained with an interferometer is one such example that
relies heavily on techniques from statistics.

Machine Learning is a subfield of artificial intelligence
with the goal of developing algorithms capable of learning
from data automatically. In particular, an artificially in-
telligent agent needs to be able to recognize objects in its
surroundings and predict the behavior of its environment
in order to make informed choices. Therefore, techniques
in ML tend to be more focused on prediction rather than
estimation. For example, how do we use data from the
interferometry experiment to predict what interference
pattern would be observed under a different experimental
setup? In addition, methods from ML tend to be applied
to more complex high-dimensional problems than those
typically encountered in a classical statistics course.

Despite these differences, estimation and prediction
problems can be cast into a common conceptual frame-
work. In both cases, we choose some observable quantity
x of the system we are studying (e.g., an interference
pattern) that is related to some parameters w (e.g., the
speed of light) of a model p(x|w) that describes the prob-
ability of observing « given w. Now, we perform an ex-
periment to obtain a dataset X and use these data to fit
the model. Typically, “fitting” the model involves find-
ing w that provides the best explanation for the data
— in this case, that means that the estimated parame-
ters maximize the probability of observing the data (i.e.,
w = argmax,, {p(X|w)}). Estimation problems are con-
cerned with the accuracy of w, whereas prediction prob-
lems are concerned with the ability of the model to pre-
dict new observations (i.e., the accuracy of p(x|w)). Al-
though the goals of estimation and prediction are related,
they often lead to different approaches. As this review
is aimed as an introduction to the concepts of ML, we
will focus on prediction problems and refer the reader to
one of many excellent textbooks on classical statistics for
more information on estimation ( ,

) ) ) ) )

, 2013).
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B. Why study Machine Learning?

The last three decades have seen an unprecedented in-
crease in our ability to generate and analyze large data
sets. This “big data” revolution has been spurred by an
exponential increase in computing power and memory
commonly known as Moore’s law. Computations that
were unthinkable a few decades ago can now be routinely
performed on laptops. Specialized computing machines
(such as GPU-based machines) are continuing this trend
towards cheap, large-scale computation, suggesting that
the “big data” revolution is here to stay.

This increase in our computational ability has been ac-
companied by new techniques for analyzing and learning
from large datasets. These techniques draw heavily from
ideas in statistics, computational neuroscience, computer
science, and physics. Similar to physics, modern ML
places a premium on empirical results and intuition over
the more formal treatments common in statistics, com-
puter science, and mathematics. This is not to say that
proofs are not important or undesirable. Rather, many
of the advances of the last two decades — especially in
fields like deep learning — do not have formal justifica-
tions (much like there still exists no mathematically well-
defined concept of the Feynman path-integral in d > 1).

Physicists are uniquely situated to benefit from and
contribute to ML. Many of the core concepts and tech-
niques used in ML — such as Monte-Carlo methods, simu-
lated annealing, variational methods — have their origins
in physics. Moreover, “energy-based models” inspired by
statistical physics are the backbone of many deep learn-
ing methods. For these reasons, there is much in modern
ML that will be familiar to physicists.

Physicists and astronomers have also been at the fore-
front of using “big data”. For example, experiments such
as CMS and ATLAS at the LHC generate petabytes of
data per year. In astronomy, projects such as the Sloan
Digital Sky Survey (SDSS) routinely analyze and release
hundreds of terabytes of data measuring the properties
of near a billion stars and galaxies. Researchers in these
fields are increasingly incorporating recent advances in
ML and data science, and this trend is likely to acceler-
ate in the future.

Besides applications to physics, part of the goal of this
review is to serve as an introductory resource for those
looking to transition to more industry-oriented projects.
Physicists have already made many important contribu-
tions to modern big data applications in an industrial
setting ( , ). Data scientists and ML engineers
in industry use concepts and tools developed for ML to
gain insight from large datasets. A familiarity with ML
is a prerequisite for many of the most exciting employ-
ment opportunities in the field, and we hope this review
will serve as a useful introduction to ML for physicists
beyond an academic setting.

C. Scope and structure of the review

Any review on ML must simultaneously accomplish
two related but distinct goals. First, it must convey the
rich theoretical foundations underlying modern ML. This
task is made especially difficult because ML is very broad
and interdisciplinary, drawing on ideas and intuitions
from many fields including statistics, computational neu-
roscience, and physics. Unfortunately, this means mak-
ing choices about what theoretical ideas to include in the
review. This review emphasizes connections with sta-
tistical physics, physics-inspired Bayesian inference, and
computational neuroscience models. Thus, certain ideas
(e.g., gradient descent, expectation maximization, varia-
tional methods, and deep learning and neural networks)
are covered extensively, while other important ideas are
given less attention or even omitted entirely (e.g., statis-
tical learning, support vector machines, kernel methods,
Gaussian processes). Second, any ML review must give
the reader the practical know-how to start using the tools
and concepts of ML for practical problems. To accom-
plish this, we have written a series of Jupyter notebooks
to accompany this review. The notebooks introduce the
nuts-and-bolts of how to use, code, and implement the
methods introduced in the main text. Luckily, there
are numerous great ML software packages available in
Python (scikit-learn, tensorflow, Pytorch, Keras) and we
have made extensive use of them. We have also made use
of a new package, Paysage, for energy-based generative
models which has been co-developed by one of the au-
thors (CKF) and maintained by Unlearn.AI (a company
affiliated with two of the authors: CKF and PM). The
purpose of the notebooks is to both familiarize physicists
with these resources and to serve as a starting point for
experimenting and playing with ideas.

ML can be divided into three broad categories: super-
vised learning, unsupervised learning, and reinforcement
learning. Supervised learning concerns learning from la-
beled data (for example, a collection of pictures labeled
as containing a cat or not containing a cat). Common
supervised learning tasks include classification and re-
gression. Unsupervised learning is concerned with find-
ing patterns and structure in unlabeled data. Examples
of unsupervised learning include clustering, dimensional-
ity reduction, and generative modeling. Finally, in rein-
forcement learning an agent learns by interacting with an
environment and changing its behavior to maximize its
reward. For example, a robot can be trained to navigate
in a complex environment by assigning a high reward to
actions that help the robot reach a desired destination.
We refer the interested reader to the classic book by Sut-
ton and Barto Reinforcement Learning: an Introduction
( , ). While useful, the distinction
between the three types of ML is sometimes fuzzy and
fluid, and many applications often combine them in novel
and interesting ways. For example, the recent success
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of Google DeepMind in developing ML algorithms that
excel at tasks such as playing Go and video games em-
ploy deep reinforcement learning, combining reinforce-
ment learning with supervised learning methods based
on deep neural networks.

Here, we limit our focus to supervised and unsuper-
vised learning. The literature on reinforcement learning
is extensive and uses ideas and concepts that, to a large
degree, are distinct from supervised and unsupervised
learning tasks. For this reason, to ensure cohesiveness
and limit the length of this review, we have chosen not
to discuss reinforcement learning. However, this omis-
sion should not be mistaken for a value judgement on
the utility of reinforcement learning for solving physical
problems. For example, some of the authors have used
inspiration from reinforcement learning to tackle difficult
problems in quantum control ( , ).

In writing this review, we have tried to adopt a style
that reflects what we consider to be the best of the
physics tradition. Physicists understand the importance
of well-chosen examples for furthering our understand-
ing. It is hard to imagine a graduate course in statistical
physics without the Ising model. Each new concept that
is introduced in statistical physics (mean-field theory,
transfer matrix techniques, high- and low-temperature
expansions, the renormalization group, etc.) is applied to
the Ising model. This allows for the progressive building
of intuition and ultimately a coherent picture of statisti-
cal physics. We have tried to replicate this pedagogical
approach in this review by focusing on a few well-chosen
techniques — linear and logistic regression in the case of
supervised learning and clustering in the case of unsu-
pervised learning — to introduce the major theoretical
concepts.

In this same spirit, we have chosen three interest-
ing datasets with which to illustrate the various algo-
rithms discussed here. (i) The SUSY data set consists
of 5,000,000 Monte-Carlo samples of proton-proton col-
lisions decaying to either signal or background processes,
which are both parametrized with 18 features. The sig-
nal process is the production of electrically-charged su-
persymmetric particles, which decay to W bosons and an
electrically-neutral supersymmetric particle, invisible to
the detector, while the background processes are various
decays involving only Standard Model particles (

, ). (i) The Ising data set consists of 10%
states of the 2D Ising model on a 40 x 40 square lat-
tice, obtained using Monte-Carlo (MC) sampling at a
few fixed temperatures T'. (iii) The MNIST dataset com-
prises 70000 handwritten digits, each of which comes in
a square image, divided into a 28 x 28 pixel grid. The
first two datasets were chosen to reflect the various sub-
disciplines of physics (high-energy experiment, condensed
matter) where we foresee techniques from ML becom-
ing an increasingly important tool for research. The
MNIST dataset, on the other hand, introduces the fla-

vor of present-day ML problems. By re-analyzing the
same datasets with multiple techniques, we hope readers
will be able to get a sense of the various, inevitable trade-
offs involved in choosing how to analyze data. Certain
techniques work better when data is limited while others
may be better suited to large data sets with many fea-
tures. A short description of these datasets are given in
the Appendix.

This review draws generously on many wonderful text-
books on ML and we encourage the reader to con-
sult them for further information. They include Abu
Mostafa’s masterful Learning from Data, which intro-
duces the basic concepts of statistical learning theory
( , ), the more advanced but
equally good The Elements of Statistical Learning by
Hastie, Tibshirani, and Friedman ( , ),
Michael Neilsen’s indispensable Neural Networks and
Deep Learning which serves as a wonderful introduction
to the neural networks and deep learning ( )
and David MacKay’s outstanding Information Theory,
Inference, and Learning Algorithms which introduced
Bayesian inference and information theory to a whole
generation of physicists ( , ). More com-
prehensive (and much longer) books on modern ML
techniques include Christopher Bishop’s classic Pattern
Recognition and Machine Learning ( , )
and the more recently published Machine Learning: A
Probabilistic Perspective by Kevin Murphy ( ,

). Finally, one of the great successes of modern ML is
deep learning, and some of the pioneers of this field have
written a textbook for students and researchers entitled
Deep Learning ( , ). In addition to
these textbooks, we have consulted numerous research
papers, reviews, and web resources. Whenever possible,
we have tried to point the reader to key papers and other
references that we have found useful in preparing this re-
view. However, we are neither capable of nor have we
made any effort to make a comprehensive review of the
literature.

The review is organized as follows. We begin by
introducing polynomial regression as a simple example
that highlights many of the core ideas of ML. The next
few chapters introduce the language and major concepts
needed to make these ideas more precise including tools
from statistical learning theory such as overfitting, the
bias-variance tradeoff, regularization, and the basics of
Bayesian inference. The next chapter builds on these
examples to discuss stochastic gradient descent and its
generalizations. We then apply these concepts to linear
and logistic regression, followed by a detour to discuss
how we can combine multiple statistical techniques to
improve supervised learning, introducing bagging, boost-
ing, random forests, and XG Boost. These ideas, though
fairly technical, lie at the root of many of the advances
in ML over the last decade. The review continues with
a thorough discussion of supervised deep learning and



neural networks, as well as convolutional nets. We then
turn our focus to unsupervised learning. We start with
data visualization and dimensionality reduction before
proceeding to a detailed treatment of clustering. Our
discussion of clustering naturally leads to an examina-
tion of variational methods and their close relationship
with mean-field theory. The review continues with a
discussion of deep unsupervised learning, focusing on
energy-based models, such as Restricted Boltzmann Ma-
chines (RBMs) and Deep Boltzmann Machines (DBMs).
Then we discuss two new and extremely popular model-
ing frameworks for unsupervised learning, generative ad-
versarial networks (GANSs) and variational autoencoders
(VAEs). We conclude the review with an outlook and
discussion of promising research directions at the inter-
section physics and ML.

Il. WHY IS MACHINE LEARNING DIFFICULT?

A. Setting up a problem in ML and data science

Almost every problem in ML and data science starts
with the same ingredients. The first ingredient is the
dataset X. The second is the model g(w), which is a
function of the parameters w. The final ingredient is the
cost function C(X, g(w)) that allows us to judge how well
the model g(w) explains, or in general performs on, the
observations X. The model is fit by finding the value of
w that minimizes the cost function. For example, one
commonly used cost function is the squared error. Min-
imizing the squared error cost function is known as the
method of least squares, and is typically appropriate for
experiments with Gaussian measurement errors.

ML researchers and data scientists follow a standard
recipe to obtain models that are useful for prediction
problems. We will see why this is necessary in the fol-
lowing sections, but it is useful to present the recipe up
front to provide context. The first step in the analysis
is to randomly divide the dataset X into two mutually
exclusive groups X ain and Xiegt called the training and
test sets. The fact that this must be the first step should
be heavily emphasized — performing some analysis (such
as using the data to select important variables) before
partitioning the data is a common pitfall that can lead
to incorrect conclusions. Typically, the majority of the
data are partitioned into the training set (e.g., 90%) with
the remainder going into the test set. The model is fit by
minimizing the cost function using only the data in the
training set w = argmin,, {C(Xirain, g(w))}. Finally, the
performance of the model is evaluated by computing the
cost function using the test set C(Xtest, g(w)). The value
of the cost function for the best fit model on the training
set is called the in-sample error Ej, = C(Xtrain, 9(W))
and the value of the cost function on the test set is called
the out-of-sample error Equy = C(Xiest, g(W)).

One of the most important observations we can make
is that the out-of-sample error is almost always greater
than the in-sample error, i.e. FEou > Fin. We explore
this point further in Sec. VI and its accompanying note-
book. Splitting the data into mutually exclusive train-
ing and test sets provides an unbiased estimate for the
predictive performance of the model — this is known as
cross-validation in the ML and statistics literature. In
many applications of classical statistics, we start with a
mathematical model that we assume to be true (e.g., we
may assume that Hooke’s law is true if we are observing
a mass-spring system) and our goal is to estimate the
value of some unknown model parameters (e.g., we do
not know the value of the spring stiffness). Problems in
ML, by contrast, typically involve inference about com-
plex systems where we do not know the exact form of the
mathematical model that describes the system. There-
fore, it is not uncommon for ML researchers to have mul-
tiple candidate models that need to be compared. This
comparison is usually done using Fo.; and the model that
minimizes this out-of-sample error is chosen as the best
model (i.e. model selection). Note that once we select
the best model on the basis of its performance on Eg,
the real-world performance of the winning model should
be expected to be slightly worse because the test data
was now used in the fitting procedure.

B. Polynomial Regression

In the previous section, we mentioned that multiple
candidate models are typically compared using the out-
of-sample error Fu,. It may be at first surprising that
the model that has the lowest out-of-sample error Fq,
usually does mot have the lowest in-sample error FEji,.
Therefore, if our goal is to obtain a model that is use-
ful for prediction we do not want to choose the model
that provides the best explanation for the current obser-
vations. At first glance, the observation that the model
providing the best explanation for the current dataset
probably will not provide the best explanation for future
datasets is very counter-intuitive.

Moreover, the discrepancy between Ei, and FEg, be-
comes more and more important, as the complexity of our
data, and the models we use to make predictions, grows.
As the number of parameters in the model increases,
we are forced to work in high-dimensional spaces. The
“curse of dimensionality” ensures that many phenomena
that are absent or rare in low-dimensional spaces become
generic. For example, the nature of distance changes in
high dimensions, as evidenced in the derivation of the
Maxwell distribution in statistical physics where the fact
that all the volume of a d-dimensional sphere of radius
r is contained in a small spherical shell around 7 is ex-
ploited. Almost all critical points of a function (i.e., the
points where all derivatives vanish) are saddles rather
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FIG. 1 Fitting versus predicting for noiseless data. Nirain = 10 points in the range z € [0, 1] were generated from a
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with Ztest € [0,1.2] (shown on right). Notice that in the absence of noise (¢ = 0), given enough data points that fitting and

predicting are identical.

than maxima or minima (an observation first made in
physics in the context of the p-spin spherical spin glass).
For all these reasons, it turns out that for complicated
models studied in ML, predicting and fitting are very
different things.

To develop some intuition about why we need to pay
close attention to out-of-sample performance, we will
consider a simple one-dimensional problem — polynomial
regression. Our task is a simple one, fitting data with
polynomials of different order. We will explore how our
ability to predict depends on the number of data points
we have, the “noise” in the data generation process, and
our prior knowledge about the system. The goal is to
build intuition about why prediction is difficult in prepa-
ration for introducing general strategies that overcome

these difficulties.

Before reading the rest of the section, we strongly en-
courage the reader to read Notebook 1 and complete the
accompanying exercises.

Consider a probabilistic process that assigns a label y;
to an observation x;. The data are generated by drawing
samples from the equation

yi = f(xi) + s, (1)

where f(x;) is some fixed (but possibly unknown) func-
tion, and 7; is a Gaussian, uncorrelated noise variable,
such that

(nin;) = bijo.


https://physics.bu.edu/~pankajm/MLnotebooks.html
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FIG. 2 Fitting versus predicting for noisy data. Nain = 100 noisy data points (o = 1) in the range = € [0, 1] were
generated from a linear model (top) or tenth-order polynomial (bottom). This data was fit using three model classes: linear
models (red), all polynomials of order 3 (yellow), all polynomials of order 10 (green) and used to make prediction on Niegst = 20
new data points with ziest € [0,1.2](shown on right). Notice that even when the data was generated using a tenth order
polynomial, the linear and third order polynomials give better out-of-sample predictions, especially beyond the x range over

which the model was trained.

We will refer to the f(x;) as the function used to generate
the data, and o as the noise strength. The larger o is the
noisier the data; o = 0 corresponds to the noiseless case.

To make predictions, we will consider a family of func-
tions g, (z;w,) that depend on some parameters w,,.
These functions represent the model class that we are us-
ing to model the data and make predictions. Note that
we choose the model class without knowing the function
f(z). The go(x;w,) encode the features we choose to
represent the data. In the case of polynomial regression
we will consider three different model classes: (i) all poly-
nomials of order 1 which we denote by g1 (x; w1), (ii) all
polynomials up to order 3 which we denote by gs(x; ws),
and (iii) all polynomials of order 10, gjo(x;w1p). Notice

that these three model classes contain different number
of parameters. Whereas g (x; w1) has only two parame-
ters (the coefficients of the zeroth and first order terms
in the polynomial), gs(x;ws) and gio(x; wig) have four
and eleven parameters, respectively. This reflects the fact
that these three models have different model complexities.
If we think of each term in the polynomial as a “feature”
in our model, then increasing the order of the polyno-
mial we fit increases the number of features. Using a
more complex model class may give us better predictive
power, but only if we have enough statistical power to
accurately learn the model parameters associated with
these extra features from the training dataset.

To learn the parameters w,, we will train our models



on a training dataset and then test the effectiveness of
the model on a different dataset, the test dataset. Since
we are interested only in gaining intuition, we will simply
plot the fitted polynomials and compare the predictions
of our fits for the test data with the true values. As we
will see below, the models that give the best fit to existing
data do not necessarily make the best predictions even
for a simple task like polynomial regression.

To illustrate these ideas, we encourage the reader to
experiment with the accompanying notebook to gener-
ate data using a linear function f(z) = 2z and a tenth
order polynomial f(z) = 2z — 1025 + 1520 and ask
how the size of the training dataset Ni;a;, and the noise
strength o affect the ability to make predictions. Obvi-
ously, more data and less noise leads to better predic-
tions. To train the models (linear, third-order, tenth-
order), we uniformly sampled the interval x € [0, 1] and
constructed Niyain training examples using (1). We then
fit the models on these training samples using standard
least-squares regression. To visualize the performance of
the three models, we plot the predictions using the best
fit parameters for a test set where = are drawn uniformly
from the interval € [0,1.2]. Notice that the test interval
is slightly larger than the training interval.

Figure 1 shows the results of this procedure for the
noiseless case, 0 = 0. Even using a small training set
with Niain = 10 examples, we find that the model class
that generated the data also provides the best fit and the
most accurate out-of-sample predictions. That is, the
linear model performs the best for data generated from a
linear polynomial (the third and tenth order polynomials
perform similarly), and the tenth order model performs
the best for data generated from a tenth order polyno-
mial. While this may be expected, the results are quite
different for larger noise strengths.

Figure 2 shows the results of the same procedure for
noisy data, o = 1, and a larger training set, Niain = 100.
As in the noiseless case, the tenth order model provides
the best fit to the data (i.e., the lowest Fi,). In contrast,
the tenth order model now makes the worst out-of-sample
predictions (i.e., the highest E,,;). Remarkably, this is
true even if the data were generated using a tenth order
polynomial.

At small sample sizes, noise can create fluctuations in
the data that look like genuine patterns. Simple mod-
els (like a linear function) cannot represent complicated
patterns in the data, so they are forced to ignore the
fluctuations and to focus on the larger trends. Complex
models with many parameters, such as the tenth order
polynomial in our example, can capture both the global
trends and noise-generates patterns at the same time. In
this case, the model can be tricked into thinking that the
noise encodes real information. This problem is called
“overfitting” and leads to a steep drop-off in predictive
performance.

We can guard against overfitting in two ways: we can
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FIG. 3 Fitting versus predicting for noisy data.
Niain = 10* noisy data points (o =1) in the range = € [0,1]
were generated from a tenth-order polynomial. This data was
fit using three model classes: linear models (red), all polyno-
mials of order 3 (yellow), all polynomials of order 10 (green)
and used to make prediction on Niest = 100 new data points
with Zgest € [0, 1.2](shown on right). The tenth order polyno-
mial gives good predictions but the model’s predictive power
quickly degrades beyond the training data range.

use less expressive models with fewer parameters, or we
can collect more data so that the likelihood that the noise
appears patterned decreases. Indeed, when we increase
the size of the training data set by two orders of mag-
nitude to Nipain = 10% (see Figure 3) the tenth order
polynomial clearly gives both the best fits and the most
predictive power over the entire training range x € [0, 1],
and even slightly beyond to approximately z ~ 1.05.
This is our first experience with what is known as the



bias-variance tradeoff, c.f. Sec. II1.B. When the amount
of training data is limited as it is when Ny, = 100,
one can often get better predictive performance by using
a less expressive model (e.g., a lower order polynomial)
rather than the more complex model (e.g., the tenth-
order polynomial). The simpler model has more “bias”
but is less dependent on the particular realization of the
training dataset, i.e. less “variance”. Finally we note that
even with ten thousand data points, the model’s perfor-
mance quickly degrades beyond the original training data
range. This demonstrates the difficulty of predicting be-
yond the training data we mentioned earlier.

This simple example highlights why ML is so difficult
and holds some universal lessons that we will encounter
repeatedly in this review:

e Fitting is not predicting. Fitting existing data well
is fundamentally different from making predictions
about new data.

e Using a complex model can result in overfitting. In-
creasing a model’s complexity (i.e number of fitting
parameters) will usually yield better results on the
training data. However when the training data size
is small and the data are noisy, this results in over-
fitting and can substantially degrade the predictive
performance of the model.

e For complex datasets and small training sets, sim-
ple models can be better at prediction than com-
plex models due to the bias-variance tradeoff. It
takes less data to train a simple model than a com-
plex one. Therefore, even though the correct model
is guaranteed to have better predictive performance
for an infinite amount of training data (less bias),
the training errors stemming from finite-size sam-
pling (variance) can cause simpler models to out-
perform the more complex model when sampling is
limited.

e It is difficult to generalize beyond the situations
encountered in the training data set.

I1l. BASICS OF STATISTICAL LEARNING THEORY

In this section, we briefly summarize and discuss the
sense in which learning is possible, with a focus on su-
pervised learning. We begin with an unknown function
y = f(x) and fix a hypothesis set H consisting of all func-
tions we are willing to consider, defined also on the do-
main of f. This set may be uncountably infinite (e.g. if
there are real-valued parameters to fit). The choice of
which functions to include in A usually depends on our
intuition about the problem of interest. The function
f(x) produces a set of pairs (x;,y;), ¢ = 1...N, which
serve as the observable data. Our goal is to select a func-
tion from the hypothesis set h € H which approximates
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f(z) as best as possible, namely, we would like to find
h € H such that h ~ f in some strict mathematical
sense which we specify below. If this is possible, we say
that we learned f(z). But if the function f(z) can, in
principle, take any value on unobserved inputs, how is it
possible to learn in any meaningful sense?

The answer is that learning is possible in the restricted
sense that the fitted model will probably perform approx-
imately as well on new data as it did on the training data.
Once an appropriate error function E is chosen for the
problem under consideration (e.g. sum of squared errors
in linear regression), we can define two distinct perfor-
mance measures of interest. The in-sample error, Ej,,
quantifies performance of a particular hypothesis on the
training data we used to fit the model. The out-of-sample
or generalization error, F.; is the performance on new
data. Recall that our goal is to make the out-of-sample
error, Fqu;, as small as possible. However, when we are
training our model, we only have access to the in-sample
error, Ej,, on the training data. Note that these two er-
rors are generally distinct because finite-size effects stem-
ming from sampling noise ensure that E;, will not be the
same as Fqy,¢, and the parameters are tuned to minimize
Ei,. This is precisely the distinction between fitting and
predicting introduced in Sec II.

This raises a natural question: Can we say something
general about the relationship between FEi, and Eoyu?
Surprisingly, the answer is ‘Yes’. We can in fact say
quite a bit. This is the domain of statistical learning
theory, and we give a brief overview of the main results
in this section. Our goal is to briefly introduce some
of the major ideas from statistical learning theory be-
cause of the important role they have played in shaping
how we think about machine learning. However, this is
a highly technical and theoretical field, so we will just
briefly skim over some introductory topics. An in-depth
and more thorough introduction to statistical learning
theory can be found in the introductory textbook by Abu
Mustafa ( ) ).

A. Three simple schematics that summarize the basic
intuitions from Statistical Learning Theory

The basic intuitions of statistical learning can be sum-
marized in three simple schematics. The first schematic,
shown in Figure 4, shows the typical out-of-sample er-
ror, Eou, and in-sample error, Fj,, as a function of the
amount of training data. In making this graph, we have
assumed that the true data is drawn from a sufficiently
complicated distribution, so that we cannot exactly learn
the function f(z). Hence, after a quick initial drop (not
shown in figure), the in-sample error will increase with
the number of data points, since our models are not pow-
erful enough to learn the true function we are seeking to
approximate. In contrast, the out-of-sample error will de-
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FIG. 4 Schematic of typical in-sample and out-of-
sample error as a function of training set size. The
typical in-sample or training error, Fi,, out-of-sample or gen-
eralization error, F,,:, bias, variance, and difference of errors
as a function of the number of training data points. The
schematic assumes that the number of data points is large (in
particular, the schematic does not show the initial drop in
E;, for small amounts of data), and that our model cannot
exactly fit the true function f(x).

crease with the number of data points in this high data
regime. As the number of data points gets large, the sam-
pling noise decreases and the training data set becomes a
better and better representative of the true distribution
from which the data is drawn. For this reason, in the in-
finite data limit, the in-sample and out-of-sample errors
must approach the same value, which is called the “bias”
of our model.

The bias represents the best our model could do if we
had an infinite amount of training data to beat down
sampling noise. The bias is a property of the kind of
functions, or model class, we are using to approximate
f(z). In general, the more complex the model class we
use, the smaller the bias. However, we do not generally
have an infinite amount of data. For this reason, to get
best predictive power it is better to minimize the out-of-
sample error, Fo, rather than the bias. As shown graph-
ically in Figure 4, Foyt can be naturally decomposed into
a bias, which measures how well we can hypothetically
do in the infinite data limit, and a variance which mea-
sures the typical errors introduced in training our model
due to sampling noise from having a finite training set.

The final quantity shown in Figure 4 is the difference
between the generalization and training error. It mea-
sures how well our in-sample error reflects the out-of-
sample error, and measures how much worse we would
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FIG. 5 Bias-Variance tradeoff and model complexity.
This schematic shows the typical out-of-sample error E,,: as
function of the model complexity for a training dataset of fixed
size. Notice how the bias always decreases with model com-
plexity, but the variance, i.e. fluctuation in performance due
to finite size sampling effects, increases with model complex-
ity. Thus, optimal performance is achieved at intermediate
levels of model complexity.

do on a new data set compared to our training data. For
this reason, the difference between these errors is pre-
cisely the quantity that measures the difference between
fitting and predicting. Models with a large difference be-
tween the in-sample and out-of-sample errors are said to
“overfit” the data. One of the lessons of statistical learn-
ing theory is that it is not enough to simply minimize
the training error, since the out-of-sample error can still
be large. As we will see in our discussion of regression in
Sec. VI, this insight naturally leads to the idea of “regu-
larization”.

The second schematic, shown in Figure 5, shows the
out-of-sample, or test, error Fy, as function of “model
complexity”. Model complexity is a very subtle idea and
defining it precisely is one of the great achievements of
statistical learning theory. However, roughly speaking,
model complexity is a measure of the complexity of the
model class we are using to approximate the true function
f(z). For example, a model with more free parameters is
generally more complex than one with fewer fitting pa-
rameters’. In the example of polynomial regression dis-
cussed above, higher-order polynomials are more complex
than the linear model. If we consider a training dataset
of a fixed size, F,u will be a non-monotonic function
of the model complexity, and is generally minimized for
models with intermediate complexity. The underlying

1 Note that models with more parameters are not always more
complex. One neat example in the context of one-dimensional
regression in given in ( , ), Figure 7.5.
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FIG. 6 Bias-Variance tradeoff. Another useful depiction
of the bias-variance tradeoff is to think about how E,, varies
as we consider different training data sets of a fixed size. A
more complex model (green) will exhibit larger fluctuations
(variance) due to finite size sampling effects than the sim-
pler model (black). However, the average over all the trained
models (bias) is closer to the true model for the more complex
model.

reason for this is that, even though using a more com-
plicated model always reduces the bias, at some point
the model becomes too complex for the amount of train-
ing data and the generalization error becomes large due
to high variance. Thus, to minimize F,,; and maximize
our predictive power, it may be more suitable to use a
more biased model with small variance than a less-biased
model with large variance. This important concept is
commonly called the bias-variance tradeoff and gets at
the heart of why machine learning is difficult.

Another way to visualize the bias-variance tradeoff is
shown in Figure 6. In this figure, we imagine training
a complex model (shown in green) and a simpler model
(shown in black) many, many times on different training
sets of a fixed size N. Due to the sampling noise from
having finite size data sets, the learned models will differ
for each choice of training sets. In general, more complex
models need a larger amount of training data. For this
reason, the fluctuations in the learned models (variance)
will be much larger for the more complex model than the
simpler model. However, if we consider the asymptotic
performance as we increase the size of the training set
(the bias), it is clear that the complex model will even-
tually perform better than the simpler model. Thus, de-
pending on the amount of training data, it may be more
favorable to use a less complex, high-bias model to make
predictions.
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B. Bias-Variance Decomposition

In this section, we dig further into the central princi-
ple that underlies much of machine learning: the bias-
variance tradeoff. Roughly speaking, this says that there
is a tradeoff between how expressive our model class is
and how sensitive the fitted model is to sample fluctu-
ations in the training data. That is, the more (less)
expressive the model, the larger (smaller) the fluctua-
tions. Less expressive models exhibit bias in what they
are able to fit, and thus there is a tradeoff between the
bias and the variance of the fitted model. Oftentimes in
physics, we are mostly concerned with expressivity, e.g.
whether the true ground state wavefunction can be well-
approximated by a class of variational wavefunctions such
as a matrix product state. In the learning context, there
is the additional challenge of finding the best variational
state with finite sampling. We will see that while this
concept is a generally useful heuristic to keep in mind,
it is a mathematically precise statement when decompos-
ing the squared error. Finally, we note that a better term
would be the bias-variance decomposition, as it is possible
to have high bias and high variance.

We will discuss the bias-variance tradeoff in the con-
text of continuous predictions such as regression. How-
ever, many of the intuitions and ideas discussed here also
carry over to classification tasks. Consider a dataset £
consisting of the data X, = {(y;,z;),7 =1...N}. Let
us assume that the true data is generated from a noisy
model

y=f(z)+e (2)

where € is normally distributed with mean zero and stan-
dard deviation o..

Assume that we have a statistical procedure (e.g. least-
squares regression) for forming a predictor g, (x) that
gives the prediction of our model for a new data point .
This estimator is chosen by minimizing a cost function
which we take to be the squared error

C(X.g(@) = D (yi — ge(@i)*. 3)

i

We are interested in the generalization error on all data
drawn from the true model, not just the error on the
particular training dataset £ that we have in hand. This
is just the expectation of the cost function over many
different data sets {£;}. Denote this expectation value
by E,. In other words, we can view g, as a stochastic
functional that depends on the dataset £ and we can
think of E; as the expected value of the functional if we
drew an infinite number of datasets {£1, Ls,. ..}

We would also like to average over different instances
of the “noise” € and we denote the expectation value over
the noise by E.. Thus, we can decompose the expected
generalization error as
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> (i — f@i) + flai) - QL(%’))Q]

= E(yi — f(®@:))’] + Ec.o[(f(@:) — e (2:))?] + 2Bc[yi — f(@)|Eclf (@) — g (a:)]

= Z 052 + Eg[(f(fl?z) - f][;(:l:i))2],

(4)

where in the last line we used the fact that our noise has zero mean and variance o2 and the sum over 4 applies to all
terms. It is also helpful to further decompose the second term as follows:

Be[(f(xi) = ge(®:))*]) = Ec[(f

(
= Ec[(f(

xi) = Eclge ()] + Eglge ()] — ge(x:))?]
@) — Ec[ge(x:)))?] + Ecl(9c(wi) — Eclje(x:)))?]

+ 2B, [(f(xi) — Ec[ge(x:)])(gc (i) — Eclge(zi)])]
= (f(®:) — Eclge (@) + Ecl(9e(x:) — Bclge(2:)))?). (5)

The first term is called the bias

Bias® = Z(f(:cz) — Erlge(x)])? (6)

%

and measures the deviation of the expectation value of
our estimator (i.e. the asymptotic value of our estimator
in the infinite data limit) from the true value. The second
term is called the variance

Var = Z Ec[(gc(m;) — Eclge(=:)])?], (7)

and measures how much our estimator fluctuates due to
finite-sample effects. Combining these expressions, we
see that the expected out-of-sample error of our model
can be decomposed as

Eou = Er.[C(X,§(x))] = Bias® + Var + Noise. (8)

The bias-variance tradeoff summarizes the fundamen-
tal tension in machine learning, particularly supervised
learning, between the complexity of a model and the
amount of training data needed to train it. Since data
is often limited, in practice it is often useful to use a
less-complex model with higher bias — a model whose
asymptotic performance is worse than another model —
because it is easier to train and less sensitive to sampling
noise arising from having a finite-sized training dataset
(smaller variance). This is the basic intuition behind the
schematics in Figs. 4, 5, and 6.

IV. GRADIENT DESCENT AND ITS GENERALIZATIONS

Almost every problem in ML and data science starts
with the same ingredients: a dataset X, a model g(8),

(

which is a function of the parameters 8 and a cost func-
tion C(X,g(0)) that allows us to judge how well the
model ¢g(0) explains the observations X. The model is
fit by finding the values of 8 that minimize the cost func-
tion. In this section, we discuss one of the most powerful
and widely used classes of methods for performing this
minimization — gradient descent and its generalizations.
The basic idea behind these methods is straightforward:
iteratively adjust the parameters in the direction where
the gradient of the cost function is large and negative.
In this way, the training procedure ensures the parame-
ters flow towards a local minimum of the cost function.
However, in practice gradient descent is full of surprises
and a series of ingenious tricks have been developed by
the optimization and machine learning communities to
improve the performance of these algorithms.

The underlying reason why training a machine learn-
ing algorithm is difficult is that the cost functions we
wish to optimize are usually complicated, rugged, non-
convex functions in a high-dimensional space with many
local minima. To make things even more difficult, we
almost never have access to the true function we wish
to minimize but, instead must estimate this function di-
rectly from data. In modern applications, both the size
of the dataset and the number of parameters we wish to
fit is often enormous (millions of parameters and exam-
ples). The goal of this chapter is to explain how gradient
descent methods can be used to train machine learning
algorithms even in these difficult settings.

This chapter seeks to both introduce commonly used
methods and give intuition for why they work. We
also include some practical tips for improving the per-
formance of stochastic gradient descent ( , ;

, ). To help the reader gain more in-
tuition about gradient descent and its variants, we have



developed a Jupyter notebook that allows the reader to
visualize how these algorithms perform on two dimen-
sional surfaces. The reader is encouraged to experi-
ment with the accompanying notebook whenever a new
method is introduced (especially to explore how changing
hyper-parameters can effect performance). The reader
may also wish to consult useful reviews that cover these
topics ( , ) and this blog http://ruder.io/
optimizing-gradient-descent/.

A. Gradient Descent and Newton’s method

We begin by introducing a simple first-order gradient
descent method and comparing and contrasting it with
another algorithm, Newton’s method. Newton’s method
is intimately related to many algorithms (conjugate gra-
dient, quasi-Newton methods) commonly used in physics
for optimization problems. Denote the function we wish
to minimize by E(0). In the context of machine learning,
E(0) is just the cost function E(0) = C(X, ¢g(0)). As we
shall see for linear and logistic regression in Secs. VI, VII,
this energy function can almost always be written as a
sum over n data points,

n

E(0) = Zei(xi,e). (9)

i=1

For example, for linear regression e; is just the mean
square-error for data point i whereas, for logistic regres-
sion, it is the cross-entropy. To make analogy with phys-
ical systems, we will often refer to this function as the
“energy”.

In the simplest gradient descent (GD) algorithm, we
iteratively update the parameters according to the fol-
lowing rule. Initialize the parameters to some value 6
and iteratively update the parameters according to the
equation

vi = VeE(0y),
0t+1 = Ht — Vit (10)

where Vg E(0) is the gradient of F(8) w.r.t to 8 and we
have introduced a learning rate, 1., that controls how big
a step we should take in the direction of the gradient
at time ¢. It is clear that for sufficiently small choice of
the learning rate n; this methods will converge to a local
manimum of the cost function. However, choosing a small
1. comes at a huge computational cost. The smaller 7,
the more steps we have to take to reach the local mini-
mum. In contrast, if n; is too large, we can overshoot the
minimum and the algorithm becomes unstable (it either
oscillates or even moves away from the minimum). This
is shown in Figure 7. In practice, one usually specifies
a “schedule” that decreases 7, at long times. Common
schedules include power law and exponential decays in
time.
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FIG. 7 Gradient descent exhibits three qualitatively
different regimes as a function of the learning rate.
Result of gradient descent on surface z = z? + 10y? — 1 for
learning rate of n = 0.1,0.9,1.01. Notice that the trajectory
converges to the global minima in multiple steps for small
learning rates (n = 0.1). Increasing the learning rate fur-
ther (n = 0.9) causes the trajectory to oscillate around the
global minima before converging. For even larger learning
rates (n = 1.01) the trajectory diverges from the minima. See
corresponding notebook for details.

To better understand this behavior and highlight some
of the shortcomings of GD, it is useful to contrast GD
with Newton’s method which is the inspiration for many
widely employed optimization methods. In Newton’s
method, we choose the step v for the parameters in such
a way as to minimize a second-order Taylor expansion to
the energy function

E0+v)~E(0)+VoE0)v + %VTH(G)V,

where H(6) is the Hessian matrix of second derivatives.
Differentiating this equation respect to v and noting that
for the optimal value vopy we expect Vo E(60 + vop) = 0,
yields the following equation

0= VoE(8) + H(0)Vop. (11)

Rearranging this expression results in the desired update
rules for Newton’s method

V¢ = Hﬁl(ﬁt)VgE(Gt) (12)
0t+1 = 9,5 — V. (13)

Since we have no guarantee that the Hessian is well con-
ditioned, in almost all applications of Netwon’s method,
one replaces the inverse of the Hessian H~!(6;) by some
suitably regularized pseudo-inverse such as [H (6;)+el]~*
with € a small parameter ( , ).

For the purposes of machine learning, Newton’s
method is not practical for two interrelated reasons.
First, calculating a Hessian is an extremely expensive
numerical computation. Second, even if we employ first-
order approximation methods to approximate the Hes-
sian (commonly called quasi-Newton methods), we must


https://physics.bu.edu/~pankajm/MLnotebooks.html
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store and invert a matrix with n? entries, where n is the
number of parameters. For models with millions of pa-
rameters such as those commonly employed in the neu-
ral network literature, this is close to impossible with
present-day computational power. Despite these practi-
cal shortcomings, Newton’s method gives many impor-
tant intuitions about how to modify GD algorithms to
improve their performance. Notice that, unlike in GD
where the learning rate is the same for all parameters,
Newton’s method automatically “adapts” the learning
rate of different parameters depending on the Hessian
matrix. Since the Hessian encodes the curvature of the
surface we are trying to find the minimum of — more
specifically, the singular values of the Hessian are in-
versely proportional to the squares of the local curvatures
of the surface — Newton’s method automatically adjusts
the step size so that one takes larger steps in flat di-
rections with small curvature and smaller steps in steep
directions with large curvature.

Our derivation of Newton’s method also allows us to
develop intuition about the role of the learning rate in
GD. Let’s first consider the special case of using GD to
find the minimum of a quadratic energy function of a sin-
gle parameter 6 ( , ). Given the current
value of our parameter 8, we can ask what is the optimal
choice of the learning rate nopt, where 7op¢ is defined as
the value of 7 that allows us to reach the minimum of the
quadratic energy function in a single step (see Figure 8).
To find nopt, we expand the energy function to second
order around the current value

E0+v) =E(0.)+ 0gE(0)v + %8§E(9)v2. (14)

Differentiating with respect to v and setting Oy, = 0 — v
yields

Ormin = 0 — [0 E(0)] 1 0o E(0). (15)
Comparing with (10) gives,
nopt = [83E(6)]71 (16)

One can show that there are four qualitatively different
regimes possible (see Fig. 8) ( , ). If
7 < Nopt, then GD will take multiple small steps to reach
the bottom of the potential. For n = ngpt, GD reaches
the bottom of the potential in a single step. If 7oy <
1N < 2Nopt, then the GD algorithm will oscillate across
both sides of the potential before eventually converging
to the minima. However, when 7 > 21,p¢, the algorithm
actually diverges!

It is straightforward to generalize this to the multidi-
mensional case. The natural multidimensional general-
ization of the second derivative is the Hessian H(6). We
can always perform a singular value decomposition (i.e.
a rotation by an orthogonal matrix for quadratic minima
where the Hessian is symmetric, see Sec. VI.B for a brief
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FIG. 8 Effect of learning rate on convergence. For a
one dimensional quadratic potential, one can show that there
exists four different qualitative behaviors for gradient descent
(GD) as a function of the learning rate n depending on the
relationship between 1 and nopt = [03E(0)]"'. (a) For n <
Nopt, GD converges to the minimum. (b) For n = nopt, GD
converges in a single step. (c) For nopt < 7 < 27opt, GD
oscillates around the minima and eventually converges. (d)
For 1 > 2nopt, GD moves away from the minima. This figure
is adapted from ( , ).

introduction to SVD) and consider the singular values
{A} of the Hessian. If we use a single learning rate for all
parameters, in analogy with (16), convergence requires
that

2
n <

) 17
Amax ( )
where Apax is the largest singular value of the Hessian.
If the minimum eigenvalue A, differs significantly from
the largest value A ax, then convergence in the Apin-
direction will be extremely slow! One can actually show

that the convergence time scales with the condition num-
ber k = )\max/)\min ( y )

B. Limitations of the simplest gradient descent algorithm

The last section hints at some of the major shortcom-
ings of the simple GD algorithm described in (10). Before
proceeding, we briefly summarize these limitations and
discuss general strategies for modifying GD to overcome
these deficiencies.

e GD finds local minima of our function. Since the
GD algorithm is deterministic, if it converges, it
will converge to a local minimum of our energy
function. Because in ML we are often dealing with



extremely rugged landscapes with many local min-
ima, this can lead to poor performance. A similar
problem is encountered in physics. To overcome
this, physicists often use methods like simulated
annealing that introduce a fictitious “temperature”
which is eventually taken to zero. The “tempera-
ture” term introduces stochasticity in the form of
thermal fluctuations that allow the algorithm to
thermally tunnel over energy barriers. This sug-
gests that, in the context of ML, we should modify
GD to include stochasticity.

GD s sensitive to initial conditions. One con-
sequence of the local nature of GD is that initial
conditions matter. Depending on where one starts,
one will end up at a different local minima. There-
fore, it is very important to think about how one
initializes the training process. This is true for GD
as well as more complicated variants of GD intro-
duced below.

Gradients are computationally expensive to calcu-
late for large datasets. In many cases in statistics
and ML, the energy function is a sum of terms,
with one term for each data point. For example, in
linear regression, F o< Y i (y; — wl . x;)?; for lo-
gistic regression, the square error is replaced by the
cross entropy, see Secs. VI, VII. Thus, to calculate
the gradient we have to sum over all n data points.
Doing this at every GD step becomes extremely
computationally expensive. An ingenious solution
to this, discussed below, is to calculate the gra-
dients using small subsets of the data called “mini
batches”. This has the added benefit of introducing
stochasticity into our algorithm.

GD is very sensitive to choices of learning rates. As
discussed above, GD is extremely sensitive to the
choice of learning rates. If the learning rate is very
small, the training process take an extremely long
time. For larger learning rates, GD can diverge and
give poor results. Furthermore, depending on what
the local landscape looks like, we have to modify
the learning rates to ensure convergence. Ideally,
we would “adaptively” choose the learning rates to
match the landscape.

GD treats all directions in parameter space uni-
formly. Another major drawback of GD is that
unlike Newton’s method, the learning rate for GD
is the same in all directions in parameter space. For
this reason, the maximum learning rate is set by the
behavior of the steepest direction and this can sig-
nificantly slow down training. Ideally, we would like
to take large steps in flat directions and small steps
in steep directions. Since we are exploring rugged
landscapes where curvatures change, this requires
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us to keep track of not only the gradient but second
derivatives of the energy function (note as discussed
above, the ideal scenario would be to calculate the
Hessian but this proves to be too computationally
expensive).

e GD can take exponential time to escape saddle
points, even with random initialization. As we men-
tioned, GD is extremely sensitive to initial condi-
tion since it determines the particular local mini-
mum GD would eventually reach. However, even
with a good initialization scheme, through the in-
troduction of randomness to be introduced later,
GD can still take exponential time to escape sad-
dle points, which are prevalent in high-dimensional
space, even for non-pathological objective functions
( , ). Indeed, there are modified GD
methods developed recently to accelerate the es-
cape. The details of these boosted method are be-
yond the scope of this review, and we refer avid
readers to ( , ) for details.

In the next few subsections, we will introduce variants
of GD that address many of these shortcomings. These
generalized gradient descent methods form the backbone
of much of modern deep learning and neural networks,
see Sec IX. For this reason, the reader is encouraged to
really experiment with different methods in landscapes
of varying complexity using the accompanying notebook.

C. Stochasticity Gradient Descent (SGD) with mini-batches

One of the most widely-applied variants of the gra-
dient descent algorithm is stochastic gradient descent
(SGD) (B0t o, 201 , 1956). As
the name suggests, unlike ordinary GD, the algorithm
is stochastic. Stochasticity is incorporated by approx-
imating the gradient on a subset of the data called a
minibatch?. The size of the minibatches is almost always
much smaller than the total number of data points n,
with typical minibatch sizes ranging from ten to a few
hundred data points. If there are n points, and the mini-
batch size is M, there will be n/M minibatches. Let us
denote these minibatches by By where k = 1...n/M.
Thus, in SGD, at each gradient descent step we approx-
imate the gradient using a minibatch By,

VoE(6) =) Voei(xi,0) — > Voei(x;,0), (18)
i 1€ By,

2 Traditionally, SGD was reserved for the case where you train on
a single example — in other words minibatches of size 1. However,
we will use SGD to mean any approximation to the gradient on
a subset of the data.



cycling over all M minibatches. A full iteration over all
n data points — in other words using all M minibatches
— is called an epoch. For notational convenience, we will
denote the mini-batch approximation to the gradient by

M
VoEME(0) = ) Viei(xi,0). (19)
1€ By,

With this notation, we can rewrite the SGD algorithm as

Vi = mVeEMB(G),
0t+1 = Ot — V. (20)

Thus, in SGD, we replace the actual gradient over the
full data at each gradient descent step by an approxima-
tion to the gradient computed using a minibatch. This
has two important benefits. First, it introduces stochas-
ticity and decreases the chance that our fitting algorithm
gets stuck in isolated local minima. Second, it signifi-
cantly speeds up the calculation as one does not have to
use all n data points to calculate the gradient. Empirical
and theoretical work suggests that SGD has additional
benefits. Chief among these is that introducing stochas-
ticity is thought to act as a natural regularizer that pre-
vents overfitting in deep, isolated minima ( , ;

7

D. Adding Momentum

In practice, SGD is almost always used with a “mo-
mentum” or inertia term that serves as a memory of the
direction we are moving in parameter space. This is typ-
ically implemented as follows

v = vt + Vo E(6y)
041 =0, — vy, (21)

where we have introduced a momentum parameter 7,
with 0 < v < 1, and for brevity we dropped the ex-
plicit notation to indicate the gradient is to be taken
over a different mini-batch at each step. We call this al-
gorithm gradient descent with momentum (GDM). From
these equations, it is clear that v; is a running average
of recently encountered gradients and (1 —v)~! sets the
characteristic time scale for the memory used in the av-
eraging procedure. Consistent with this, when v = 0,
this just reduces down to ordinary SGD as described in
Eq. (20). An equivalent way of writing the updates is

Al = YA — 0 Ve E(0y), (22)

where we have defined A@; = 6; — 0;_1. In what should
be a familiar scenario to many physicists, momentum
based methods were first introduced in old, largely for-
gotten (until recently) Soviet papers ( , ;

) )
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Before proceeding further, let us try to get more in-
tuition from these equations. It is helpful to consider a
simple physical analogy with a particle of mass m moving
in a viscous medium with drag coefficient 1 and potential

E(w) ( , ). If we denote the particle’s position
by w, then its motion is described by
d*w dw

We can discretize this equation in the usual way to get

WipAr — 2Wy + Wy A¢ WipAL — Wi

= 7V11)E .

(Af)2 THTTA (w)

(24)

Rearranging this equation, we can rewrite this as

(At)? m

A =——"FV,E ——Awy. (25

Witat m + pAt (w)+ m + pAt Wi (25)

Notice that this equation is identical to Eq. (22) if we
identify the position of the particle, w, with the parame-
ters 8. This allows us to identify the momentum param-
eter and learning rate with the mass of the particle and
the viscous drag as:

2

S L — n= & (26)
m 4+ puAt m + uAt

Thus, as the name suggests, the momentum parameter

is proportional to the mass of the particle and effec-

tively provides inertia. Furthermore, in the large vis-

cosity /small learning rate limit, our memory time scales

as (1 — )"t =~ m/(ult).

Why is momentum useful? SGD momentum helps
the gradient descent algorithm gain speed in directions
with persistent but small gradients even in the presence
of stochasticity, while suppressing oscillations in high-
curvature directions. This becomes especially important
in situations where the landscape is shallow and flat in
some directions and narrow and steep in others. It has
been argued that first-order methods (with appropriate
initial conditions) can perform comparable to more ex-
pensive second order methods, especially in the context
of complex deep learning models ( , ).
Empirical studies suggest that the benefits of including
momentum are especially pronounced in complex models
in the initial “transient phase” of training, rather than
during a subsequent fine-tuning of a coarse minimum.
The reason for this is that, in this transient phase, corre-
lations in the gradient persist across many gradient de-
scent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can some-
times become even more pronounced by using a slight
modification of the classical momentum algorithm called
Nesterov Accelerated Gradient (NAG) ( , ;

, ). In the NAG algorithm, rather
than calculating the gradient at the current parameters,



VgE(6,), one calculates the gradient at the expected
value of the parameters given our current momentum,
VoE(6; + yvi_1). This yields the NAG update rule

Vi =YVie1 + Vo E(Or + yvi_1)
0,5_;,.1 = Gt — V. (27)

One of the major advantages of NAG is that it allows for
the use of a larger learning rate than GDM for the same
choice of 7.

E. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without mo-
mentum, we still have to specify a “schedule” for tuning
the learning rates 7; as a function of time. As discussed in
the context of Newton’s method, this presents a number
of dilemmas. The learning rate is limited by the steep-
est direction which can change depending on the current
position in the landscape. To circumvent this problem,
ideally our algorithm would keep track of curvature and
take large steps in shallow, flat directions and small steps
in steep, narrow directions. Second-order methods ac-
complish this by calculating or approximating the Hes-
sian and normalizing the learning rate by the curvature.
However, this is very computationally expensive for ex-
tremely large models. Ideally, we would like to be able to
adaptively change the step size to match the landscape
without paying the steep computational price of calcu-
lating or approximating Hessians.

Recently, a number of methods have been introduced
that accomplish this by tracking not only the gradient,

but also the second moment of the gradient. These
methods include AdaGrad ( , ), AdaDelta
( ) ), RMS-Prop ( , ),

and ADAM ( ) ). Here, we discuss
the last two as representatives of this class of algorithms.

In RMS prop, in addition to keeping a running average
of the first moment of the gradient, we also keep track of
the second moment denoted by s; = E[g?]. The update
rule for RMS prop is given by

gt = VoE(0) (28)
st = Bsi—1 + (1 — B)gf
0t+1 =0, — nti

VO

where [ controls the averaging time of the second mo-
ment and is typically taken to be about 5 = 0.9, n; is a
learning rate typically chosen to be 1072, and € ~ 1078
is a small regularization constant to prevent divergences.
Multiplication and division by vectors is understood as
an element-wise operation. It is clear from this formula
that the learning rate is reduced in directions where the
norm of the gradient is consistently large. This greatly
speeds up the convergence by allowing us to use a larger
learning rate for flat directions.
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A related algorithm is the ADAM optimizer. In
ADAM, we keep a running average of both the first and
second moment of the gradient and use this information
to adaptively change the learning rate for different pa-
rameters. In addition to keeping a running average of the
first and second moments of the gradient (i.e. m; = E[g;]
and s; = E[g?], respectively), ADAM performs an addi-
tional bias correction to account for the fact that we are
estimating the first two moments of the gradient using a
running average (denoted by the hats in the update rule
below). The update rule for ADAM is given by (where
multiplication and division are once again understood to
be element-wise operations below)

g = VoE(6) (29)

my = fim;_1 + (1 - fB1)g:
st = fasi—1 + (1 — 52)&2

N my
m; =
1—p1
A S¢
S = ———
1—p%
m
041 =06;— nt\/gij_ea
t

(30)

where 51 and B set the memory lifetime of the first and
second moment and are typically taken to be 0.9 and 0.99
respectively, and 7 and € are identical to RMSprop.

Like in RMSprop, the effective step size of a parameter
depends on the magnitude of its gradient squared. To
understand this better, let us rewrite this expression in
terms of the variance o = §; — (1 )?. Consider a single
parameter 6;. The update rule for this parameter is given
by

my

L S— (31)
ol +m? +e

A9t+1 =Tt

We now examine different limiting cases of this expres-
sion. Assume that our gradient estimates are consistent
so that the variance is small. In this case our update
rule tends to Af;y1 — —n; (here we have assumed that
my > €). This is equivalent to cutting off large persis-
tent gradients at 1 and limiting the maximum step size
in steep directions. On the other hand, imagine that the
gradient is widely fluctuating between gradient descent
steps. In this case 02 > 17 so that our update becomes
A1 — —merng/oy. In other words, we adapt our learn-
ing rate so that it is proportional to the signal-to-noise
ratio (i.e. the mean in units of the standard deviation).
From a physical point of view, this is extremely desir-
able. The standard deviation serves as a natural adap-
tive scale for deciding whether a gradient is large or small.
Thus, ADAM has the beneficial effects of adapting our
step size so that we cut off large gradient directions (and
hence prevent oscillations and divergences) and measur-



ing gradients in terms of a natural length scale, the stan-
dard deviation o;. The discussion above also explains
empirical observations showing that the performance of
both ADAM and RMSprop is drastically reduced if the
square root is omitted in the update rule. It’s also worth
noting that recent studies have shown adaptive methods
like RMSProp, ADAM, and AdaGrad tend to general-
ize worse than SGD in classification tasks, though they
achieve smaller training error. Such discussion is beyond
the scope of this review so we refer readers to (
, ) for more details.

F. Comparison of various methods

To better understand these methods, it is helpful to
visualize the performance of the five methods discussed
above — gradient descent (GD), gradient descent with
momentum (GDM), NAG, ADAM, and RMSprop. To
do so, we will use Beale’s function:

flz,y) = (15 —z + zy)? (32)
+(2.25 — z 4+ 2y*)? + (2.625 — = + zy°).

This function has a global minimum at (x,y) = (3,0.5)
and an interesting structure that can be seen in Fig. 9.
The figure shows the results of using all five methods
for Ngteps = 10* steps for three different initial condi-
tions. In the figure, the learning rate for GD, GDM, and
NAG are set to n = 10~% whereas RMSprop and ADAM
have a learning rate of n = 1073. The learning rates
for RMSprop and ADAM can be set significantly higher
than the other methods due to their adaptive step sizes.
For this reason, ADAM and RMSprop tend to be much
quicker at navigating the landscape than simple momen-
tum based methods (see Fig. 9). Notice that in some
cases (e.g. initial condition of (—1,4)), the trajectories
do not find the global minimum but instead follow the
deep, narrow ravine that occurs along y = 1. This kind of
landscape structure is generic in high-dimensional spaces
where saddle points proliferate. Once again, the adaptive
step size and momentum of ADAM and RMSprop allows
these methods to traverse the landscape faster than the
simpler first-order methods. The reader is encouraged to
consult the corresponding Jupyter notebook and exper-
iment with changing initial conditions, the loss surface
being minimized, and hyper-parameters to gain more in-
tuition about all these methods.

G. Gradient descent in practice: practical tips

We conclude this chapter by compiling some practical
tips from experts for getting the best performance from
gradient descent based algorithms, especially in the con-
text of deep neural networks discussed later in the review,
see Secs. XVI.B, IX. This section draws heavily on best
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FIG. 9 Comparison of GD and its generalization for
Beale’s function. Trajectories from gradient descent (GD;
black line), gradient descent with momentum (GDM; magenta
line), NAG (cyan-dashed line), RMSprop (blue dash-dot line),
and ADAM (red line) for Nggeps = 10*. The learning rate
for GD, GDM, NAG is = 107¢ and = 10~ for ADAM
and RMSprop. 8 = 0.9 for RMSprop, 81 = 0.9 and §2 =
0.99 for ADAM, and ¢ = 102 for both methods. Please see
corresponding notebook for details.

practices laid out in ( ; ; ) ;

9 )'

e Randomize the data when making mini-batches. It
is always important to randomly shuffle the data
when forming mini-batches. Otherwise, the gra-
dient descent method can fit spurious correlations
resulting from the order in which data is presented.

e Transform your inputs. As we discussed above,
learning becomes difficult when our landscape has
a mixture of steep and flat directions. One simple
trick for minimizing these situations is to standard-
ize the data by subtracting the mean and normaliz-
ing the variance of input variables. Whenever pos-
sible, also decorrelate the inputs. To understand
why this is helpful, consider the case of linear re-
gression. It is easy to show that for the squared
error cost function, the Hessian of the energy ma-
trix is just the correlation matrix between the in-
puts. Thus, by standardizing the inputs, we are
ensuring that the landscape looks homogeneous in
all directions in parameter space. Since most deep
networks can be viewed as linear transformations
followed by a non-linearity at each layer, we expect
this intuition to hold beyond the linear case.

e Monitor the out-of-sample performance. Always
monitor the performance of your model on a valida-
tion set (a small portion of the training data that is
held out of the training process to serve as a proxy
for the test set — see Sec. XI for more on validation
sets). If the validation error starts increasing, then
the model is beginning to overfit. Terminate the
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learning process. This early stopping significantly
improves performance in many settings.

o Adaptive optimization methods don’t always have
good generalization. As we mentioned, recent stud-
ies have shown that adaptive methods such as
ADAM, RMSPorp, and AdaGrad tend to have poor
generalization compared to SGD or SGD with mo-
mentum, particularly in the high-dimensional limit
(i.e. the number of parameters exceeds the number
of data points) ( , ). Although it is
not clear at this stage why these methods perform
so well in training deep neural networks such as
generative adversarial networks (GANs) (

, ), simpler procedures like properly-
tuned SGD may work as well or better in these
applications.

V. OVERVIEW OF BAYESIAN INFERENCE

Statistical modeling usually revolves around the es-
timation or prediction of unknown quantities ( ,
). Bayesian methods are based on the fairly simple
premise that probability can be used as a mathematical
tool for describing uncertainty. This is not that different
in spirit from the main idea of statistical mechanics in
physics, where we use probability to describe the behav-
ior of large systems where we cannot know the positions
and momenta of all of the particles even if the system
itself is fully deterministic (at least classically). In prac-
tice, Bayesian inference provides a set of principles and
procedures for learning from data and for describing un-
certainty. In this section, we’ll give a gentle introduction
to Bayesian inference, with special emphasis on its logic
(i.e. Bayesian reasoning) and connection to ML discussed
in Sec. I and III. For a technical account of Bayesian
inference in general, we refer readers to ( , ;

, 2014).

A. Bayes Rule

To solve a problem using Bayesian methods, we have
to specify two functions: the likelihood function p(X|w),
which describes the probability of observing a dataset X
for a given value of the unknown parameters w, and the
prior distribution p(w), which describes any knowledge
we have about the parameters before we collect the data.
Note that the likelihood should be considered as a func-
tion of the parameters w with the data X held fixed. The
prior distribution and the likelihood function are used to
compute the posterior distribution p(w|X) via Bayes’
rule:

p(X|w)p(w)
M0 Tawp Xy
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The posterior distribution describes our knowledge about
the unknown parameter w after observing the data X.
In many cases, it will not be possible to analytically
compute the normalizing constant in the denominator
of the posterior distribution (i.e. the partition function
p(X) = [dwp(X|w)p(w)) and Markov Chain Monte
Carlo (MCMC) methods are needed to draw random
samples from p(w|X).

The likelihood function p(X|w) is a common feature
of both classical statistics and Bayesian inference, and
is determined by the model and the measurement noise.
Many common statistical procedures such as least-square
fitting can be cast into the formalism of Maximum Like-
lihood Estimation (MLE). In MLE, one chooses the pa-
rameters w that maximize the likelihood (or equivalently
the log-likelihood since log is a monotonic function) of the
observed data:

W = arg max log p( X |w). (34)

In other words, in MLE we choose the parameters that
maximize the probability of seeing the observed data
given our generative model. MLE is an important con-
cept in both frequentist and Bayesian statistics.

The prior distribution, by contrast, is uniquely
Bayesian. There are two general classes of priors: if we
do not have any specialized knowledge about w before
we look at the data then we would like to select an unin-
formative prior that reflects our ignorance, otherwise we
should select an informative prior that accurately reflects
the knowledge we have about w. This review will focus
on informative priors that are commonly used for ML
applications. However, there is a large literature on un-
informative priors, including reparameterization invari-
ant priors, that would be of interest to physicists and
we refer the interested reader to ( ,

9 )'

Using an informative prior tends to decrease the vari-
ance of the posterior distribution while, potentially, in-
creasing its bias. This is beneficial if the decrease in
variance is larger than the increase in bias. In high-
dimensional problems, it is reasonable to assume that
many of the parameters will not be strongly relevant.
Therefore, many of the parameters of the model will
be zero or close to zero. We can express this belief
using two commonly used priors: the Gaussian prior
p(w[A) =TI, \/;B_A“’? is used to express the assump-
tion that many of the parameters will be small, and the
Laplace prior p(w|A) = []; 2eAwil is used to express
the assumption that many of the parameters will be zero.
We’ll come back to this point later in Sec. VL.F.



B. Bayesian Decisions

The above section presents the tools for computing the
posterior distribution p(w|X), which uses probability as
a framework for expressing our knowledge about the pa-
rameters w. In most cases, however, we need to sum-
marize our knowledge and pick a single “best” value for
the parameters. In principle, the specific value of the
parameters should be chosen to maximize a utility func-
tion. In practice, however, we usually use one of two
choices: the posterior mean (w) = [ dw wp(w|X), or
the posterior mode w = argmax,,p(w|X). Often, (w) is
called the Bayes estimate and w is called the mazimum-
a-posteriori or MAP estimate. While the Bayes estimate
minimizes the mean-squared error, the MAP estimate is
often used instead because it is easier to compute.

C. Hyperparameters

The Gaussian and Laplace prior distributions used to
express the assumption that many of the model param-
eters will be small or zero both have an extra parameter
A. This hyperparameter or nuisance variable has to be
chosen somehow. One standard Bayesian approach is to
define another prior distribution for A\ — usually using an
uninformative prior — and to average the posterior distri-
bution over all choices of A\. This is called a hierarchical
prior. Computing averages, however, often requires long
Markov Chain Monte Carlo simulations that are compu-
tationally intensive. Therefore, it is simpler if we can
find a good value of A\ using an optimization procedure
instead. We will discuss how this is done in practice when
discussing linear regression in Sec. VI.

VI. LINEAR REGRESSION

In Section II, we performed our first numerical ML
experiments by fitting datasets generated by polynomi-
als in the presence of different levels of additive noise.
We used the 1 fitted parameters to make predictions on
‘unseen’ observations, allowing us to gauge the perfor-
mance of our model on new data. These experiments
highlighted the fundamental tension common to all ML
models between how well we fit the training dataset and
predictions on new data. The optimal choice of predictor
depended on, among many other things, the functions
used to fit the data and the underlying noise level. In
Section III, we formalized this by introducing the notion
of model complexity and the bias-variance decomposi-
tion, and discussed the statistical meaning of learning.
In this section, we take a closer look at these ideas in the
simple setting of linear regression.

As in Section II, fitting a given set of samples (y;,x;)
means relating the independent variables x; to their re-
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sponses ;. For example, suppose we want to see how
the voltage across two sides of a metal slab V' changes
in response to the applied electric current 7. Normally
we would first make a bunch of measurements labeled
by 4 and plot them on a two-dimensional scatterplot,
(Vi, I;). The next step is to assume, either from an oracle
or from theoretical reasoning, some models that might
explain the measurements and measuring their perfor-
mance. Mathematically, this amounts to finding some
function f such that V; = f(I;;w), where w is some pa-
rameter (e.g. the electrical resistance R of the metal slab
in the case of Ohm’s law). We then try to minimize the
errors made in explaining the given set of measurements
based on our model f by tuning the parameter w. To
do so, we need to first define the error function (formally
called the loss function) that characterizes the deviation
of our prediction from the actual response.

Before formulating the problem, let us set up the no-
tation. Suppose we are given a dataset with n samples
D = {(yi, x;)}1,, where x; is the i-th observation vec-
tor while y; is its corresponding (scalar) response. We
assume that every sample has p features x; € RP. Let
f be the true function/model that generated these sam-
ples via y; = f(@;; Wirue) + €, where wyye € RP is a
parameter vector and ¢; is some i.i.d. white noise with
zero mean and finite variance. Conventionally, we cast
all samples into a n X p matrix, X € R™*P_ called the de-
stgn matrix, with the rows x;, - - - , «,, being observations
and the columns Xj,---, X, being measured features.
Bear in mind that this function f is never known to us
explicitly, though in practice we usually presume its func-
tional form. For example, in linear regression, we assume
Vi = f(Ti; Wirne) + € = T} Wipue + €; for some unknown
but fixed wipye € RP.

We want to find a function g with parameters w fit
to the data D that can best approximate f. When this
is done, meaning we have found a w such that g(x; w)
yields our best estimate of f, we can use this g to make
predictions about the response y, for a new data point
xg, as we did in Section II.

It will be helpful for our discussion of linear regres-
sion to define one last piece of notation. For any real
number p > 1, we define the LP norm of a vector
x = (21, - ,74) € R? to be

1
lzllp = (Jz1 [P + -+ + |zal”)> (35)

A. Least-square regression

Ordinary least squares linear regression (OLS) is de-
fined as the minimization of the Ly norm of the difference
between the response y; and the predictor g(x;;w) =

zlw:

n
. X _ 2: . T _ 42.
in || Xw —yl|; = min _El(wzw yi) (36)
1=



In other words, we are looking to find the w which min-
imizes the Ly error. Geometrically speaking, the predic-
tor function g(x;; w) = 7w defines a hyperplane in RP.
Minimizing the least squares error is therefore equivalent
to minimizing the sum of all projections (i.e. residuals)
for all points @; to this hyperplane (see Fig. 10). For-
mally, we denote the solution to this problem as wps:

Wrs = arg min || Xw — yl|3, (37)
weRP

which, after straightforward differentiation, leads to
s = (XTX) 1 XxTy. (38)

Note that we have assumed that X7 X is invertible, which
is often the case when n > p. Formally speaking, if
rank(X) = p, namely, the predictors Xi,..., X, (ie.
columns of X) are linearly independent, then wpg is
unique. In the case of rank(X) < p, which happens when
p > n, XTX is singular, implying there are infinitely
many solutions to the least squares problem, Eq. (37).
In this case, one can easily show that if wy is a solution,
wp +7m is also a solution for any 1 which satisfies X =0
(i.e. m € null(X)). Having determined the least squares
solution, we can calculate y, the best fit of our data X,
as § = Xaps = Pxy, where Px = X(XTX)1XT,
c.f. Eq. (36). Geometrically, Px is the projection matrix
which acts on y and projects it onto the column space of
X, which is spanned by the predictors Xi,---, X, (see
FIG. 11). Notice that we found the optimal solution wrg
in one shot, without doing any sort of iterative optimiza-
tion like that discussed in Section IV.

A

»
>

FIG. 10 Geometric interpretation of least squares regression.
The regression function g defines a hyperplane in R? (green
solid line, here we have p = 2) while the residual of data
point x; (hollow circles) is its projection onto this hyperplane
(bar-ended dashed line).

In Section IIT we explained that the difference between
learning and fitting lies in the prediction on “unseen"
data. It is therefore necessary to examine the out-of-
sample error. For a more refined argument on the role
of out-of-sample errors in linear regression, we encour-
age the reader to do the exercises in the corresponding
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Jupyter notebooks. The upshot is, following our defini-
tion of Ej, and Foy in Section 111, the average in-sample
and out-of-sample error can be shown to be

=0 (1-1) (39)
Eou =0* (1+2), (40)

provided we obtain the least squares solution wrpg from
i.i.d. samples X and y generated through y = Xwyue +
€ 3. Therefore, we can calculate the average generaliza-
tion error explicitly:

~ = D
|EBim — Eout| = 2025. (41)

This imparts an important message: if we have p > n
(i.e. high-dimensional data), the generalization error is
extremely large, meaning the model is not learning. Even
when we have p &~ n, we might still not learn well due
to the intrinsic noise o2. One way to ameliorate this
is, as we shall see in the following few sections, to use
regularization. We will mainly focus on two forms of
regularization: the first one employs an L, penalty and
is called Ridge regression, while the second uses an L

penalty and is called LASSO.

span({X1, -+, Xy })

Y-y

FIG. 11 The projection matrix Px projects the response
vector y onto the column space spanned by the columns of
X, span({X1, -+ ,Xp}) (purple area), thus forming a fitted
vector g. The residuals in Eq. (36) are illustrated by the red
vector y — 9.

B. Ridge-Regression

In this section, we study the effect of adding to the
least squares loss function a regularizer defined as the Lo
norm of the parameter vector we wish to optimize over.
In other words, we want to solve the following penalized
regression problem called Ridge regression:

WRidge(A) = argeré}jn (I1Xw =yl + Alwl) . (42)

3 This requires that € is a noise vector whose elements are i.i.d. of
zero mean and variance o2, and is independent of the samples
X.
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This problem is equivalent to the following constrained
optimization problem
[ Xw—yll3.  (43)

arg min
weRP: ||w]||3<t

wRidge (t) =

This means that for any ¢ > 0 and solution wWgriqge in
Eq. (43), there exists a value A > 0 such that Wridge
solves Eq. (42), and vice versa®. With this equivalence, it
is obvious that by adding a regularization term, \||w||3,
to our least squares loss function, we are effectively con-
straining the magnitude of the parameter vector learned
from the data.

To see this, let us solve Eq. (42) explicitly. Differenti-
ating w.r.t. w, we obtain,

WRidge(\) = (XTX + Mpxp) ' X Ty, (44)

In fact, when X is orthogonal, one can simplify this ex-
pression further:

wWrs

=TIy for orthogonal X, (45)

wRidge()\)

where g is the least squares solution given by Eq. (38).
This implies that the ridge estimate is merely the least
squares estimate scaled by a factor (1 + \)~1L.

Can we derive a similar relation between the fitted
vector §§ = XWrigge and the prediction made by least
squares linear regression? To answer this, let us do a sin-
gular value decomposition (SVD) on X. Recall that the
SVD of an n x p matrix X has the form

X =UDV7, (46)

where [U],xp and [V],x, are orthogonal matrices such
that the columns of U span the column space of X
while the columns of V span the row space of X.
[D]pxp =diag(dy,ds,--- ,dp) is a diagonal matrix with
entries dy > dy > ---dp, > 0 called the singular values of
X. Note that X is singular if there is at least one d; = 0.
By writing X in terms of its SVD, one can recast the
Ridge estimator Eq. (44) as

WRidge = V(D? + M) "' DUy, (47)

4 Note that the equivalence between the penalized and the con-
strained (regularized) form of least square optimization does not
always hold. It holds for Ridge and LASSO (introduced later),
but not for best subset selection which is defined by choosing a
L% norm: A||w||o. In this case, for every A > 0 and any wgs
that solves the penalized form of best subset selection, there is a
value t > 0 such that wgg also solves that constrained form of
best subset selection, but the converse is not true.
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which implies that the Ridge predictor satisfies

YRidge = X WRidge
=UD(D*+ \)"'DU"y

— zp:u.di?uT (48)
T LM e\

j=1
<UUTy (49)
= Xy = QLS, (50)

where u; are the columns of U. Note that in the in-
equality step we assumed A > 0 and used SVD to sim-
plify Eq. (38). By comparing Eq. (48) with Eq. (50), it is
clear that in order to compute the fitted vector y, both
Ridge and least squares linear regression have to project
y to the column space of X. The only difference is that
Ridge regression further shrinks each basis component j
by a factor d}/(d5 + X). We encourage the reader to do
the exercises in Notebook 3 to develop further intuition
about how Ridge regression works.

C. LASSO and Sparse Regression

In this section, we study the effects of adding an L, reg-
ularization penalty, conventionally called LASSO, which
stands for “least absolute shrinkage and selection opera-
tor”. Concretely, LASSO in the penalized form is defined
by the following regularized regression problem:

wLAsso(A):arglginl\Xw*yllg+/\||w\|1- (51)
weRP

As in Ridge regression, there is another formulation for
LASSO based on constrained optimization, namely,

argmin || Xw — y|3. (52)

weRP: [Jw|y <t

wrasso(t) =

The equivalence interpretation is the same as in Ridge
regression, namely, for any ¢ > 0 and solution wy,asso in
Eq. (52), there is a value A > 0 such that wrasso solves
Eq. (51), and vice versa. However, to get the analytic
solution of LASSO, we cannot simply take the gradient
of Eq. (51) with respect to w, since the Lq-regularizer is
not everywhere differentiable, in particular at any point
where w; = 0 (see Fig. 13). Nonetheless, LASSO is a
convex problem. Therefore, we can invoke the so-called
“subgradient optimality condition" (

, ; , ) in optimization theory
to obtain the solution. To keep the notation simple, we
only show the solution assuming X is orthogonal:

uA);JASSO(/\) = sign(w.?s)(|1f)§fs| — A)4, for orthogonal X,

(53)
where (x); denotes the positive part of x and uA)?S is
the j-th component of least squares solution. In Fig. 12,
we compare the Ridge solution Eq. (45) with LASSO
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solution Eq. (53). As we mentioned above, the Ridge
solution is the least squares solution scaled by a factor
of (1 + )\). Here LASSO does something conventionally
called “soft-thresholding" (see Fig. 12). We encourage
interested readers to work out the exercises in Notebook
3 to explore what this function does.

LASSO Ridge
1 !
e ) scaled by
A ;L" '__.-" 1+ A
P""r————( ” = ”
. >\ ‘
FIG. 12 [Adapted from (Friedman et al., 2001)] Comparing

LASSO and Ridge regression. The black 45 degree line is
the unconstrained estimate for reference. The estimators are
shown by red dashed lines. For LASSO, this corresponds to
the soft-thresholding function Eq. (53) while for Ridge regres-
sion the solution is given by Eq. (45)

How different are the solutions found using LLASSO
and Ridge regression? In general, LASSO tends to give
sparse solutions, meaning many components of Wy asso
are zero. An intuitive justification for this result is pro-
vided in Fig. 13. In short, to solve a constrained op-
timization problem with a fixed regularization strength
t > 0, for example, Eq. (43) and Eq. (52), one first carves
out the “feasible region" specified by the regularizer in the
{wy,- -+ ,wq} space. This means that a solution 1y is le-
gitimate only if it falls in this region. Then one proceeds
by plotting the contours of the least squares regressors in
an increasing manner until the contour touches the fea-
sible region. The point where this occurs is the solution
to our optimization problem (see Fig. 13 for illustration).
Loosely speaking, since the L regularizer of LASSO has
sharp protrusions (i.e. vertices) along the axes, and be-
cause the regressor contours are in the shape of ovals (it
is quadratic in w), their intersection tends to occur at
the vertex of the feasibility region, implying the solution
vector will be sparse.

In Notebook 3, we analyze a Diabetes dataset using
both LASSO and Ridge regression to predict the dia-
betes outcome one year forward (Ffron et al., 2004). In
Figs. 14, 15, we show the performance of both methods
and the solutions wi,asso (), Wridge (M) explicitly. More
details of this dataset and our regression implementation
can be found in Notebook 3.

D. Using Linear Regression to Learn the Ising Hamiltonian

To gain deeper intuition about what kind of physics
problems linear regression allows us to tackle, consider
the following problem of learning the Hamiltonian for
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LASSO Ridge

FIG. 13 [Adapted from (Friedman et al., 2001)] Hlustra-
tion of LASSO (left) and Ridge regression (right). The blue
concentric ovals are the contours of the regression function
while the red shaded regions represent the constraint func-
tions: (left) |wi| + Jwa| < ¢ and (right) w? + w3 < ¢. In-
tuitively, since the constraint function of LASSO has more
protrusions, the ovals tend to intersect the constraint at the
vertex, as shown on the left. Since the vertices correspond to
parameter vectors w with only one non-vanishing component,
LASSO tends to give sparse solution.

—— Train (Ridge)
==- Test (Ridge)
0.8 = Train (LASSO)
—=—- Test (LASSO)
8
S 06
©
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FIG. 14 Performance of LASSO and ridge regression on the
diabetes dataset measured by the R? coefficient of determina-
tion. The best possible performance is R?> = 1. See Notebook
3.

the Ising model. Imagine you are given an ensemble of
random spin configurations, and assigned to each state
its energy, generated from the 1D Ising model:

L
H=-7Y 58 (54)
j=1

where J is the nearest-neighbor spin interaction, and
S; € {£1} is a spin variable. Let’s assume the data
was generated with J = 1. You are handed the data
set D = ({Sj}JL:th) without knowledge of what the
numbers E; mean, and the configuration {S;}%, can be
interpreted in many ways: the outcome of coin tosses,
black-and-white pixels of an image, the binary represen-
tation of integers, etc. Your goal is to learn a model that
predicts E; from the spin configurations.
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FIG. 15 Regularization parameter X affects the weights (fea-
tures) we learned in both Ridge regression (left) and LASSO
regression (right) on the Diabetes dataset. Curves with dif-
ferent colors correspond to different w;s (features). Notice
LASSO, unlike Ridge, sets feature weights to zero leading to
sparsity.See Notebook 3.

Without any prior knowledge about the origin of the
data set, physics intuition may suggest to look for a spin
model with pairwise interactions between every pair of
variables. That is, we choose the following model class:

L
Huodal[S'] = =Y > J; xS5iSh, (55)

j=1k=1

The goal is to determine the interaction matrix J; by
applying linear regression on the data set D. This is a
well-defined problem, since the unknown J; j, enters lin-
early into the definition of the Hamiltonian. To this end,
we cast the above ansatz into the more familiar linear-
regression form:

Hpoaal[S'] = X' - J. (56)

The vectors X' represent all two-body interactions
{S; i ﬁkzl, and the index 4 runs over the samples in
the dataset. To make the analogy complete, we can also
represent the dot product by a single index p = {j, k},
ie Xt.J = X;;Jp. Note that the regression model does
not include the minus sign. In the following, we apply
ordinary least squares, Ridge, and LASSO regression to
the problem, and compare their performance.

Figure. 16 shows the R? of the three regression models.

t pred 2
rue
Yo Y

iz

n true 1 n pred
Zi:l Y; n Zi:l Yi

R*=1- (57)

3"

Let us make a few remarks: (i) the regularization pa-
rameter A affects the Ridge and LASSO regressions at
scales separated by a few orders of magnitude. Notice
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—— Train (OLS)
0.6= === Test (OLS)
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FIG. 16 Performance of OLS, Ridge and LASSO regression
on the Ising model as measured by the R? coefficient of de-
termination. Optimal performance is R? = 1.See Notebook
4.

that this is different for the data considered in the di-
abetes dataset, cf. Fig. 14. Therefore, it is considered
good practice to always check the performance for the
given model and data as a function of A. (ii) While
the OLS and Ridge regression test curves are monotonic,
the LASSO test curve is not — suggesting an optimal
LASSO regularization parameter is A ~ 1072, At this
sweet spot, the Ising interaction weights J contains only
nearest-neighbor terms (as did the model the data was
generated from).

Choosing whether to use Ridge or LASSO regression in
this case turns out to be similar to fixing gauge degrees of
freedom. Recall that the uniform nearest-neighbor inter-
actions strength J; ;, = J which we used to generate the
data, was set to unity, J = 1. Moreover, J;; was NOT
defined to be symmetric (we only used the J; ;1 but
never the J; ;_; elements). Figure. 17 shows the matrix
representation of the learned weights J; ;. Interestingly,
OLS and Ridge regression learn nearly symmetric weights
J &~ —0.5. This is not surprising, since it amounts to tak-
ing into account both the J; ;11 and the J; ;_; terms, and
the weights are distributed symmetrically between them.
LASSO, on the other hand, tends to break this symme-
try (see matrix elements plots for A = 0.01) °. Thus,
we see how different regularization schemes can lead to
learning equivalent models but in different ‘gauges’. Any
information we have about the symmetry of the unknown
model that generated the data should be reflected in the
definition of the model and the choice of regularization.
In addition to the diabetes dataset in Notebook 3, we
encourage the reader to work out Notebook 4 in which
linear regression is applied to the one-dimensional Ising
model.

5 Look closer, and you will see that LASSO actually splits the
weights rather equally for the periodic boundary condition ele-
ment at the edges of the anti-diagonal.
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FIG. 17 Learned interaction matrix J;; for the Ising model ansatz in Eq. (55) for ordinary least squares (OLS) regression
(left), Ridge regression (middle) and LASSO (right) at different regularization strengths A. OLS is A-independent but is shown
for comparison throughout.See Notebook 4.
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E. Convexity of regularizer

In the previous section, we mentioned that the analyt-
ical solution of LASSO can be found by invoking its con-
vexity. In this section, we provide a gentle introduction
to convexity theory and highlight a few properties which
can help us understand the differences between LASSO
and Ridge regression. First, recall that a set C' C R™ is
called convez if for any z,y € C and ¢t € [0, 1],

tz+ (1 -tz eC. (58)

In other words, every line segment joining x,y lies en-
tirely in C. A function f : R®™ — R is called con-
vex if its domain, dom(f), is a convex set, and for any
z,y €dom(f) and t € [0,1] we have

flz+ (A =t)y) <tf(x)+ (1 -1)f(y),  (59)

That is, the function lies on or below the line segment
joining its evaluation at = and y. This function f is
called strictly convex if this inequality holds strictly for
x # yand t € (0,1). Now, it turns out that for con-
vex functions, any local minimizer is a global minimizer.
Algorithmically, this means that in the optimization pro-
cedure, as long as we are “going down the hill” and agree
to stop when we reach a minimum, then we have hit
the global minimum. In addition to this, there is an
abundance of rich theory regarding convex duality and
optimality, which allow us to understand the solutions
even before solving the problem itself. We refer interested
readers to ( , ; ,
).

Now let us examine the two regularizers we introduced
earlier. A close inspection reveals that LASSO and Ridge
regressions are both convex problems but only Ridge re-
gression is a strictly convex problem (assuming A > 0).
From convexity theory, this means that we always have a
unique solution for Ridge but not necessary for LASSO.
In fact, it was recently shown that under mild conditions,
such as demanding general position for columns of X,
the LASSO solution is indeed unique ( ,

). Apart from this theoretical characterization, (

, ) introduced the notion of Elastic Net to
retain the desirable properties of both LASSO and Ridge
regression, which is now one of the standard tools for
regression analysis and machine learning. We refer to
reader to explore this in Notebook 2.

F. Bayesian formulation of linear regression

In Section V, we gave an overview of Bayesian inference
and phrased it in the context of learning and uncertainty
quantification. In this section we formulate least squares
regression from a Bayesian point of view. We shall see
that regularization in learning will emerge naturally as
part of the Bayesian inference procedure.
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From the setup of linear regression, the data D used to
fit the regression model is generated through y = 7w +
€. We often assume that € is a Gaussian noise with mean
zero and variance o2. To connect linear regression to the
Bayesian framework, we often write the model as

plylz. 8) = N (ylu(x), 0% (@)). (60)

In other words, our regression model is defined by a con-
ditional probability that depends not only on data x but
on some model parameters 6. For example, if the mean
is a linear function of = given by yu = 7w, and the vari-
ance is fixed o2(z) = 02, then @ = (w, 0?). In statistics,
many problems rely on estimation of some parameters of
interest. For example, suppose we are given the height
data of 20 junior students from a regional high school,
but what we are interested in is the average height of all
high school juniors in the whole county. It is conceivable
that the data we are given are not representative of the
student population as a whole. It is therefore necessary
to devise a systematic way to preform reliable estima-
tion. Here we present the maximum likelihood estima-
tion (MLE), and show that least squares regression can
be derived from this framework.
MLE is defined by

0 = arg m@axlogp(D\O). (61)

Using the assumption that samples are i.i.d, we can write
the log-likelihood as

n
1(0) = logp(D|6) = > log p(yi|z:, 0) (62)
i=1
Using Eq. (60), we get

1 <« n
00) = T 952 Z(yi —zjw)? - b) log(2ma?)  (63)
=1

1
N 202|
By comparing Eq. (37) and Eq. (64), it is clear that per-
forming least squares is the same as maximizing the log-
likelihood of this model.

What about adding regularization? In Section V, we
introduced the mazimum a posteriori probability (MAP)
estimate. Here we show that it actually corresponds to
regularized linear regression, where the choice of prior
determines the type of regularization. Recall Bayes’ rule

p(8|D) o< p(D|0)p(0). (65)

| Xw — y||3 4+ const. (64)

Now instead of maximizing the log-likelihood, 1(0) =
log p(D]0), let us maximize the log posterior, log p(6|D).
Invoking Eq. (65), the MAP estimator becomes

Oriap = arg max log p(D|6) + log p(0). (66)



Suppose we use the Gaussian prior® with zero mean and
variance 72, namely, p(w) = I1; N (w;]0,7%), we can re-
cast the MAP estimator into

R 1 & 1<
Oyviap = arg max 552 g 1(yi — JliTw)2 ~ 53 E 1 w?
1= Jj=

1 1
— argungx | 510w — ol - 5wl . (6

Note that we dropped constant terms that don’t depend
on the parameters. The equivalence between MAP esti-
mation with a Gaussian prior and Ridge regression is
established by comparing Eq. (67) and Eq. (43) with
A = 02/72. We relegate the analogous derivation for
LASSO to an exercise in Notebook 3.

G. Recap and a general perspective on regularizers

In this section, we explored least squares linear regres-
sion with and without regularization. We motivated the
need for regularization due to poor generalization, in par-
ticular in the “high-dimensional limit" (p > n). Instead
of showing the average in-sample and out-of-sample er-
rors for the regularized problem explicitly, we conducted
numerical experiments in Notebook 3 on the diabetes
dataset and showed that regularization typically leads
to better generalization. Due to the equivalence between
the constrained and penalized form of regularized regres-
sion (in LASSO and Ridge, but not generally true in cases
such as LO penalization), we can regard the regularized
regression problem as an un-regularized problem but on
a constrained set of parameters. Since the size of the al-
lowed parameter space (e.g. w € RP when un-regularized
vs. w € C' C RP when regularized) is roughly a proxy for
model complexity, solving the regularized problem is in
effect solving the un-regularized problem with a smaller
model complexity class. This implies that we’re less likely
to overfit.

We also showed the connection between using a reg-
ularization function and the use of priors in Bayesian
inference. This connection can be used to develop more
intuition about why regularization implies we are less
likely to overfit the data: Let’s say you are a young
Physics student taking a laboratory class where the goal
of the experiment is to measure the behavior of several
different pendula and use that to predict the formula
(i.e. model) that determines the period of oscillation.

6 Indeed, a Gaussian prior is the conjugate prior that gives a
Gaussian posterior. For a given likelihood, conjugacy guar-
antees the preservation of prior distribution at the posterior
level. For example, for a Gaussian(Geometric) likelihood with
a Gaussian(Beta) prior, the posterior distribution is still Gaus-
sian(Beta) distribution.
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In your investigation you would probably record many
things (hopefully including the length and mass!) in an
effort to give yourself the best possible chance of deter-
mining the unknown relationship, perhaps writing down
the temperature of the room, any air currents, if the ta-
ble were vibrating, etc. What you have done is create a
high-dimensional dataset for yourself. However you actu-
ally possess an even higher-dimensional dataset than you
probably would admit to yourself. For example you are
probably aware of the time of day, that it is a Wednes-
day, your friend Alice being in attendance, your friend
Bob being absent with a cold, the country in which you
are doing the experiment, and the planet you are on, but
you almost assuredly haven’t written these down in your
notebook. Why not? The reason is because you entered
the classroom with strongly held prior beliefs that none of
those things affect the physics takes place in that room.
Even of the things you did write down in an effort to
be a careful scientist you probably hold some doubt as
to their importance to your result and what is serving
you here is the intuition that probably only a few things
matter in the physics of pendula. Hence again you are
approaching the experiment with prior beliefs about how
many features you will need to pay attention to in order
to predict what will happen when you swing an unknown
pendulum. This example might seem a bit contrived, but
the point is that we live in a high-dimensional world of
information and while we have good intuition about what
to write down in our notebook for well-known problems,
often in the field of ML we cannot say with any confi-
dence a priori what the small list of things to write down
will be, but we can at least use regularization to help us
enforce that the list not be too long so that we don’t end
up predicting that the period of a pendulum depends on
Bob having a cold on Wednesdays.

Of course, in both LASSO and Ridge regression there
is a parameter A involved. In principle, this hyper-
parameter is usually predetermined, which means that
it is not part of the regression process. As we saw in
Fig. 15, our learning performance and solution depends
strongly on A, thus it is vital to choose it properly. As
we discussed in Sec. V.C, one approach is to assume an
uninformative prior on the hyper-parameters, p(A), and
average the posterior over all choices of A following this
distribution. However, this comes with a large computa-
tional cost. Therefore, it is simpler to choose the regular-
ization parameter through some optimization procedure.

We’d like to emphasize that linear regression can be
applied to model non-linear relationship between input
and response. This can be done by replacing the input
x with some nonlinear function ¢(x). Note that doing
so preserves the linearity as a function of the parame-
ters w, since model is defined by the their inner product
o7 (x)w. This method is known as basis function expan-
sion. (Bishop, 2006; | 2012).

Recent years have also seen a surge of interest in un-
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FIG. 18 Pictorial representation of four data categories la-
beled by the integers 0 through 3 (above), or by one-hot vec-
tors with binary inputs (below).

derstanding generalized linear regression models from a
statistical physics perspective. Much of this research has
focused on understanding high-dimensional linear regres-
sion and compressed sensing (Donoho, 2006) (see (Ad-
vani et al., 2013; Zdeborova and Krzakala, 2016) for ac-
cessible reviews for physicists). On a technical level,
this research imports and extends the machinery of spin
glass physics (replica method, cavity method, and mes-
sage passing) to analyze high-dimensional linear models
(Advani and Ganguli, 2016; Fisher and Mehta, 2015a,b;
Krzakala et al., 2014, 2012a,b; Ramezanali et al., 2015;
Zdeborova and Krzakala, 2016). This is a rich area
of activity at the intersection of physics, computer sci-
ence, information theory, and machine learning and in-
terested readers are encouraged to consult the literature
for further information (see also (Mezard and Montanari,
2009)).

VII. LOGISTIC REGRESSION

So far we have focused on learning from datasets for
which there is a “continuous" output. For example, in
linear regression we were concerned with learning the co-
efficients of a polynomial to predict the response of a
continuous variable y; on unseen data based on its inde-
pendent variables x;. Classification problems, however,
are concerned with outcomes taking the form of discrete
variables (i.e. categories). For example, we may want to
detect if there’s a cat or a dog in an image. Or given
a spin configuration of, say, the 2D Ising model, we’d
like to identify its phase (e.g. ordered/disordered). In
this section, we introduce logistic regression which deals
with binary, dichotomous outcomes (e.g. True or False,
Success or Failure, etc.). It is worth noting that logistic
regression is also commonly used in modern supervised
Deep Learning models (see Sec. IX).

This section is structured as follows: first, we define
logistic regression and derive its corresponding cost func-
tion (the cross entropy) using a Bayesian approach and
discuss its minimization. Then, we generalize logistic re-
gression to the case of multiple categories which is called
Softmax regression. We demonstrate logistic regression
via application to three different problems: (i) classify-
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FIG. 19 Classifying data in the simplest case of only two
categories, labeled “noise" and “signal” (or “cats" and “dogs"),
is the subject of Logistic Regression.

ing phases of the 2D Ising model, (ii) the SUSY dataset,
and (i) MNIST handwritten digit classification.

In this section, we consider the case where the depen-
dent variables y; € Z are discrete and only take values
fromm =0,...,M —1 (i.e. M classes), see Fig. 18. The
goal is to predict the output classes from the design ma-
trix X € R™*P made of n samples, each of which bears
p features. Of cours e the primary goal is to identify the
classes to which new unseen samples belong.

Before delving into the details of logistic regression, it
is helpful to consider a slightly simpler classifier: a lin-
ear classifier that categorizes examples using a weighted
linear-combination of the features and an additive offset

si=xlw+by=xIW, (68)

where we use the short-hand notation x; = (1,2;) and
w; = (bp,w;). This function takes values on the entire
real axis. In the case of logistic regression, however, the
labels y; are discrete variables. One simple way to get
a discrete output is to have sign functions that map the
output of a linear regressor to {0, 1}, f(s;) = sign(s;) =1
if s; > 0 and 0 if otherwise. Indeed, this is commonly
known as the “perceptron” in the machine learning liter-
ature. This model is extremely simple, and it is favorable
in many cases (e.g. noisy data) to have a “soft" classi-
fier that outputs the probability of a given category. For
example, given x;, the classifier outputs the probability
of being in category m. One such function is the logistic
(or sigmoid) function:
1

1o)==
Note that 1 — f(s) = f(—s), which will be useful shortly.

(69)

A. The cross-entropy as a cost function for logistic regression

The perceptron is an example of a “hard classification™
each datapoint is deterministically assigned to a category



(i.e y; = 0 or y; = 1). In many cases, it is favorable to
have a “soft” classifier that outputs the probability of a
given category rather than a single value. For example,
given x;, the classifier outputs the probability of being
in category m. Logistic regression is the most canonical
example of a soft classifier. In logistic regression, the
probability that a data point @; belongs to a category
y; = {0,1} is is given by

1
P iZlSU,‘,B - T T
(=11, 0) = T

P(y; =0]z;,0) =1 — P(y; = 1|x;,0), (70)

where @ = w are the weights we wish to learn from the
data. To gain some intuition for these equations, consider
a collection of non-interacting two-state systems coupled
to a thermal bath (e.g a collection of atoms that can be
in two states). Furthermore, denote the state of system
i by a binary variable: y; € {0,1}. From elementary
statistical mechanics, we know that if the two states have
energies €9 and €; the probability for finding the system
in a state y; is just:

e Beo 1
P(yl = 1) = 67660 _i_e,,gq = 1 —|—e*ﬁA€7
P(yi=1)=1-P(y; =0). (71)

Notice that in these expressions, as is often the case in
physics, only energy differences are observable. If the
difference in energies between two states is given by Ae =
x;frw, we recover the expressions for logistic regression.
We shall use this mapping between partition functions
and classification to generalize the logistic regressor to
soft-max regression in Sec. VIL.D. Notice that in terms

of the logistic function, we can write
Plyi=1) = f(xj w) =1— P(y; = 0). (72)

We now define the cost function for logistic regression
using Maximum Likelihood Estimation (MLE). Recall,
that in MLE we choose parameters to maximize the prob-
ability of seeing the observed data. Consider a dataset
D = {(yi,z;)} with binary labels y; € {0,1} where the
data points are drawn independently. The likelihood of
the seeing the data under our model is just:

P(Dlw) = H yl 1 — f(x?w)]l_yi
i=1

(73)

from which we can readily compute the log-likelihood:

+ (1 —yi)log [1 - f(x{w)].

(74)

= yilog f(x{w)
i=1

30

The maximum likelihood estimator is defined as the set
of parameters that maximize the log-likelihood:

W = arg;naXEn:yi log f (x{ w)+(1—y;)log [1 — f(x] w)] .

i=1
(75)
Since the cost (error) function is just the negative log-
likelihood, for logistic regression we have that

C(w) = —l(w) (76)
=Y —yilog f(x]'w) = (1 — i) log [1 = f(x]w)].

i=1
Eq. (76) is known in statistics as the cross entropy. Fi-
nally, we note that just as in linear regression, in practice
we usually supplement the cross-entropy with additional
regularization terms, usually L; and Ly regularization
(see Sec. VI for discussion of these regularizers).

B. Minimizing the cross entropy

The cross entropy is a convex function of the weights w
and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equa-
tion

0=V(C(w)=

n
1=

Fxiw) =il xi, (77)
1

where we made use of the logistic function identity
0.f(z) = f(2)[1 — f(2)]. Equation (77) defines a tran-
scendental equation for w, the solution of which, unlike
linear regression, cannot be written in a closed form.
For this reason, one must use numerical methods such
as those introduced in Sec. IV to solve this optimization
problem.

C. Examples of binary classification

Let us now show how to use logistic regression in prac-
tice. In this section, we showcase two pedagogical exam-
ples to train a logistic regressor to classify binary data.
Each example comes with a corresponding Jupyter note-
book.

1. Identifying the phases of the 2D Ising model

The goal of this example is to show how one can employ
logistic regression to classify the states of the 2D Ising
model according to their phase of matter.

The Hamiltonian for the classical Ising model is given
by
S; € {£1}, (78)

H=-J]) 855,
(i)
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where the lattice site indices 4,5 run over all nearest
neighbors of a 2D square lattice, and J is an interaction
energy scale. We adopt periodic boundary conditions.
Onsager proved that this model undergoes a phase tran-
sition in the thermodynamic limit from an ordered fer-
romagnet with all spins aligned to a disordered phase at
the critical temperature T,./J = 2/log(1 + v/2) ~ 2.26.
For any finite system size, this critical point is expanded
to a critical region around T,.

An interesting question to ask is whether one can
train a statistical classifier to distinguish between the two
phases of the Ising model. If successful, this can be used
to locate the position of the critical point in more compli-
cated models where an exact analytical solution has so far
remained elusive ( , ;

, ). In other words, given an Ising state, we
would like to classify whether it belongs to the ordered or
the disordered phase, without any additional information
other than the spin configuration itself. This categorical
machine learning problem is well suited for logistic re-
gression, and will thus consist of recognising whether a
given state is ordered by looking at its bit configurations.
Notice that, for the purposes of applying logistic regres-
sion, the 2D spin state of the Ising model will be flattened
out to a 1D array, so it will not be possible to learn in-
formation about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incor-
porated using deep convolutional neural networks, see
Section IX.

To this end, we consider the 2D Ising model on a 40x40
square lattice, and use Monte-Carlo (MC) sampling to
prepare 10* states at every fixed temperature T out of
a pre-defined set. We furthermore assign a label to each
state according to its phase: 0 if the state is disordered,
and 1 if it is ordered.

It is well-known that near the critical temperature T,
the ferromagnetic correlation length diverges, which leads
to, amongst other things, critical slowing down of the MC
algorithm. Perhaps identifying the phases is also harder
in the critical region. With this in mind, consider the
following three types of states: ordered (T/J < 2.0),
near-critical (2.0 < T/J < 2.5) and disordered (T'/J >
2.5). We use both ordered and disordered states to train
the logistic regressor and, once the supervised training
procedure is complete, we will evaluate the performance
of our classification model on unseen ordered, disordered,
and near-critical states.

Here, we deploy the liblinear routine (the default for
Scikit’s logistic regression) and stochastic gradient de-
scent (SGD, see Sec. IV for details) to optimize the logis-
tic regression cost function with Lo regularization. We
define the accuracy of the classifier as the percentage of
correctly classified data points. Comparing the accuracy
on the training and test data, we can study the degree of
overfitting. The first thing to notice from Fig. 21 is the
small degree of overfitting, as suggested by the training
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(blue) and test (red) accuracy curves being very close to
each other. Interestingly, the liblinear minimizer outper-
forms SGD on the training and test data, but not on the
near-critical data for certain values of the regularization
strength A. Moreover, similar to the linear regression
examples, we find that there exists a sweet spot for the
SGD regularization strength A that results in optimal
performance of the logistic regressor, at about A ~ 1071,
We might expect that the difficulty of the phase recogni-
tion problem depends on the temperature of the queried
sample. Looking at the states in the near-critical region,
c.f. Fig. 20, it is no longer easy for a trained human eye
to distinguish between the ferromagnetic and the disor-
dered phases close to T.. Therefore, it is interesting to
also compare the training and test accuracies to the ac-
curacy of the near-critical state predictions. (Recall that
the model is not trained on near-critical states.) Indeed,
the liblinear accuracy is about 7% smaller for the criti-
cal states (green curves) compared to the test data (red
line).

Finally, it is important to note that all of Scikit’s logis-
tic regression solvers have a in-built regularizers. We did
not emphasize the role of the regularizers in this section,
but they are crucial in order to prevent overfitting. We
encourage the interested reader to play with the different
regularization types and numerical solvers in Notebook 6
and compare model performances.

2. SUSY

In high energy physics experiments, such as the AT-
LAS and CMS detectors at the CERN LHC, one major
hope is the discovery of new particles. To accomplish this
task, physicists attempt to sift through events and clas-
sify them as either a signal of some new physical process
or particle, or as a background event from already un-
derstood Standard Model processes. Unfortunately, we
don’t know for sure what underlying physical process oc-
curred (the only information we have access to are the
final state particles). However, we can attempt to de-
fine parts of phase space that will have a high percentage
of signal events. Typically this is done by using a se-
ries of simple requirements on the kinematic quantities
of the final state particles, for example having one or
more leptons with large amounts of momentum that are
transverse to the beam line (pr). Instead, here we will
use logistic regression in an attempt to find the relative
probability that an event is from a signal or a background
event. Rather than using the kinematic quantities of fi-
nal state particles directly, we will use the output of our
logistic regression to define a part of phase space that is
enriched in signal events (see Jupyter notebookNotebook
5).

The dataset we are using comes from the UC Irvine
ML repository and has been produced using Monte Carlo
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FIG. 20 Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (7'/J = 0.75,
left), the critical region (T'/J = 2.25, middle) and the disordered phase (T'/J = 4.0, right). The linear system dimension is
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FIG. 21 Accuracy as a function of the regularization param-
eter \ in classifying the phases of the 2D Ising model on the
training (blue), test (red), and critical (green) data. The solid
and dashed lines compare the ’liblinear’ and 'SGD’ solvers, re-
spectively.

simulations to contain events with two leptons (electrons
or muons) ( , ). Each event has the value
of 18 kinematic variables (“features”). The first 8 fea-
tures are direct measurements of final state particles, in
this case the pr, pseudo-rapidity n, and azimuthal angle
¢ of two leptons in the event and the amount of miss-
ing transverse momentum (MET) together with its az-
imuthal angle. The last ten features are functions of the
first 8 features; these are high-level features derived by
physicists to help discriminate between the two classes.
These high-level features can be thought of as the physi-
cists’ attempt to use non-linear functions to classify sig-
nal and background events, having been developed with

formidable theoretical effort. Here, we will use only logis-
tic regression to attempt to classify events as either sig-
nal (that is, coming from a SUSY process) or background
(events from some already observed Standard Model pro-
cess). Later on in the review, in Sec. IX, we shall revisit
the same problem with the tools of Deep Learning.

As stated before, we never know the true underlying
process, and hence the goal in these types of analysis is
to find regions enriched in signal events. If we find an ex-
cess of events above what is expected, we can have confi-
dence that they are coming from the type of signal we are
searching for. Therefore, the two metrics of import are
the efficiency of signal selection, and the background re-
jection achieved. Oftentimes, rather than thinking about
just a single working point, performance is characterized
by Receiver Operator Curves (or ROC curves, despite the
redundancy). These ROC curves plot signal efficiency
versus background rejection as a function of some con-
tinuous variable such as a threshold. Here that variable
will be the output signal probability of our logistic re-
gression. Figure 22 shows examples of these outputs for
true signal events (left) and background events (right)
using L? regularization with a regularization parameter
of 1075,

Notice that some signal events even look background-
like, and some background events look signal-like. This
is further reason to characterize performance of our selec-
tion in terms of ROC curves. Figure 23 shows examples
of these curves using L? regularization for many different
regularization parameters using either TensorFlow (top)
or Sci-Kit Learn (bottom) when using the full set of 18 in-
put variables. Notice there is minimal overfitting, in part
because we trained on such a large dataset (4.5 million
events). More importantly, however, is the underlying
data we are working with: each input variable is an an
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FIG. 22 The probability of an event being a classified as a signal event for true signal events (left, blue) and background events
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FIG. 23 ROC curves for a variety of regularization parame-
ters with L2 regularization using TensorFlow (top) or Sci-Kit
Learn (bottom).

It’s worth reflecting on whether there utility to this in-
creased sophistication. To show why we would want to
use such a technique, recall that, even to the learning al-
gorithm, some signal events and background events look
similar. We can illustrate this directly by looking at a
plot comparing the pr spectrum of the leading and sub-

leading leptons for both signal and background events.
Figure 24 shows these two distributions, and one can see
that while some signal events are easily distinguished,
many live in the same part of phase space as the back-
ground. This effect can also be seen by looking at fig-
ure 22 where you can see that some signal events ‘look’
like background events and vice-versa.
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FIG. 24 Comparison of leading vs. sub-leading lepton pr
comparison for signal (blue) and background events (red). Re-
call that these variables have been scaled to have a mean of
one.

One could then ask how much discrimination power
is obtained by simply putting different requirements on
the input variables rather than using ML techniques. In
order to compare this strategy (often referred to as cut-
based in the field of HEP) to our regression results, dif-
ferent ROC curves have been made for logistic regression
with just the simple kinematic variables, logistic regres-
sion with the full set of variables, and just putting re-
quirements on the leading lepton pr. Figure 25 shows
that there is a clear performance benefit from using logis-
tic regression. Note also that in the cut-based approach
we have only used one variable where we could have put



requirements on all of them. While putting more re-
quirements would indeed increase background rejection,
it would also decrease signal efficiency. Hence, the cut-
based approach will never yield as strong discrimination
as logistic regression. One other interesting point about
these results is that the higher-order variables noticeably
help the ML techniques. In later sections, we will return
to this point to see if more sophisticated techniques can
provide further improvement.
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FIG. 25 A comparison of discrimination power from using lo-
gistic regression with only simple kinematic variables (green),
logistic regression using both simple and higher-order kine-
matic variables (purple), and a cut-based approach that varies
the requirements on the leading lepton pr.

D. Softmax Regression

So far we have focused only on binary classification,
in which the labels are dichotomous variables. Here we
generalize logistic regression to multi-class classification.
One approach is to treat the label as a vector y; € Z}!
namely a binary bit string of length M. For example,
y; = (1,0,---,0) means data the sample x; belongs to
class 1. Following the notation in Sec. VII.A, the proba-
bility of x; being in class m’ is given by

e—x?wm/
P(Yirm = 1|x;,0) = ST aw (79)
m=0 e
where Y = [Yi]m refers to the m’-th component of vec-

tor y;. This is known as the softmax function. There-
fore, the likelihood of this M-class classifier is simply
(cf. Sec. VIL.A):

n M-1

P(D[{wi}}5h IIwr

1=1 m=0
X [1 = P(yim = 1|25, wm)] ™ (80)

yzm = 1|$u Wm)]yim
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from which we can define the cost function in a similar
fashion:

n M-—1
i=1 m=0
+ (1 — yim) log (1 — P(yim = L|xi, W) . (81)

As expected, for M = 1, we recover the cross entropy for
logistic regression, cf. Eq. (76).

E. An Example of SoftMax Classification: MNIST Digit
Classification

A paradigmatic example of softmax regression is to
classify handwritten digits from the MNIST dataset.
Yann LeCun and others first collected and processed
70000 handwritten digits, each of which is laid out on
a 28 x 28-pixel grid. Every pixel assumes one of 256
grayscale values, interpolating between white and black.
Since there are 10 categories for the digits 0 through 9,
this corresponds to SoftMax regression with M = 10. We
encourage readers to experiment with Notebook 7 to ex-
plore SoftMax regression applied to MNIST. We include
in Fig. 26 the learned weights wg, where k corresponds
to class labels (i.e. digits). We’ll come back to SoftMax
regression in Sec. IX.

VIll. COMBINING MODELS

One of the most powerful and widely-applied ideas in
modern machine learning is the use of ensemble methods
that combine predictions from multiple, often weak, sta-
tistical models to improve predictive performance (

, ). Ensemble methods, such as random
forests ( : , ; Ho, ),
and boosted gradlent trees such as XGBoost (

, ; , ), undergird many of the
winning entries in data science competitions such as Kag-
gle, especially on structured datasets 7. Even in the con-
text of neural networks, see Sec. IX, it is common to
combine predictions from multiple neural networks to in-
crease performance on tough image classification tasks
( ; ; , :

In this section, we give an overview of ensemble meth-
ods and provide rules of thumb for when and why they
work. On one hand, the idea of training multiple models
and then using a weighted sum of the predictions of the
all these models is very natural. After all, the idea of the
“wisdom of the crowds” can be traced back, at least, to
the writings of Aristotle in Politics. On the other hand,

7 Neural networks generally perform better than ensemble meth-
ods on unstructured data, images, and audio.
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FIG. 26 Visualization of the weights w; after training a SoftMax Regression model on the MNIST dataset (see Notebook
7). We emphasize that SoftMax Regression does not have explicit 2D spatial knowledge; the model learns from data points

flattened out in a one-dimensional array.

one can also imagine that the ensemble predictions can
be much worse than the predictions from each of the in-
dividual models that constitute the ensemble, especially
when pooling reinforces weak but correlated deficiencies
in each of the individual predictors. Thus, it is impor-
tant to understand when we expect ensemble methods to
work.

In order to do this, we will revisit the bias-variance
tradeoff, discussed in Sec. III, and generalize it to con-
sider an ensemble of classifiers. We will show that the
key to determining when ensemble methods work is the
degree of correlation between the models in the ensemble
(Louppe, 20141). Armed with this intuition, we will intro-
duce some of the most widely-used and powerful ensem-
ble methods including bagging (Breiman, 1996), boosting
(Freund et al., 1999; Freund and Schapire, 1995; Schapire
and Freund, 2012), random forests (Breiman, 2001),
and gradient boosted trees such as XGBoost (Chen and
Guestrin, 2016).

A. Revisiting the Bias-Variance Tradeoff for Ensembles

The bias-variance tradeoff summarizes the fundamen-
tal tension in machine learning between the complexity
of a model and the amount of training data needed to fit
it (see Sec. IIT). Since data is often limited, in practice
it is frequently useful to use a less complex model with
higher bias — a model whose asymptotic performance is
worse than another model — because it is easier to train

and less sensitive to sampling noise arising from having a
finite-sized training dataset (i.e. smaller variance). Here,
we will revisit the bias-variance tradeoff in the context
of ensembles, drawing upon the beautiful discussion in
Ref. (Louppe, 2014).

A key property that will emerge from this analysis is
the correlation between models that constitute the en-
semble. The degree of correlation between models is
important for two distinct reasons. First, holding the
ensemble size fixed, averaging the predictions of corre-
lated models reduces the variance less than averaging
uncorrelated models. Second, in some cases, correla-
tions between models within an ensemble can result in
an increase in bias, offsetting any potential reduction in
variance gained from ensemble averaging. We will dis-
cuss this in the context of bagging below. One of the
most dramatic examples of increased bias from correla-
tions is the catastrophic predictive failure of almost all
derivative models used by Wall Street during the 2008
financial crisis.

1. Bias-Variance Decomposition for Ensembles

We will discuss the bias-variance tradeoff in the con-
text of continuous predictions such as regression. How-
ever, many of the intuitions and ideas discussed here also
carry over to classification tasks. Before discussing en-
sembles, let us briefly review the bias-variance tradeoff in
the context of a single model. Consider a data set consist-



ing of data X, = {(y;,x;),7 = 1...N}. Let us assume
that the true data is generated from a noisy model

y=[fx)+e (82)

where € is a normally distributed with mean zero and
standard deviation o..

Assume that we have a statistical procedure (e.g. least-
squares regression) for forming a predictor §.(x) that
gives the prediction of our model for a new data point x
given that we trained the model using a dataset £. This
estimator is chosen by minimizing a cost function which,
for the sake of concreteness, we take to be the squared
error

(X, g(@) = S (yi - de(x:) (83)

i

The dataset £ is drawn from some underlying distri-
bution that describes the data. If we imagine drawing
many datasets different datasets {£;} of the same size as
L from this distribution, we know that the correspond-
ing estimators ., (x) will differ from each other due to
stochastic effects arising from sampling noise. For this
reason, we can view our estimator §.(x) as a random
variable (technically a functional) and define an expec-
tation value E, in the usual way. F, is computed by
by drawing infinitely many different datasets {L£;} of the
same size, fitting the corresponding estimator, and then
averaging the results. We will also average over different
instances of the “noise” €. The expectation value over the
noise will be denoted by F..

After defining these expectation values, as discussed in
Sec. III, we can decompose the expected generalization
error as

E; . [C(X,g(x))] = Bias* + Var + Noise. (84)

where the bias,

=D (f(xi) = Eclge(xi)))?, (85)

i

Bias®

measures the deviation of the expectation value of our es-
timator (i.e. the asymptotic value of our estimator in the
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limit of infinite data) from the true value. The variance
Var =3 Ecl(gc(xi) — Ecloc(x:))?,  (86)

measures how much our estimator fluctuates due to
finite-sample effects. The noise term

Noise = Z o? (87)

is the part of the error due to intrinsic noise in the data
generation process that no statistical estimator can over-
come.

Let us now generalize this to ensembles of estimators.
Given a dataset X, and hyper-parameters ¢ that param-
eterize members of our ensemble, we will consider a pro-
cedure that deterministically generates a model g, (x;,0)
given X, and 6. We assume that the € includes some
random parameters that introduce stochasticity into our
ensemble (e.g. an initial condition for stochastic gradient
descent or a random subset of features or data points used
for training). We will be concerned with the expected
prediction error of the aggregate ensemble predictor

(Xw{e} M Z Jr Xu m (88)

For future reference, let us define the mean, variance,
and covariance (i.e. the connected correlation function
in the language of physics), and the normalized correla-
tion coefficient with respect to 8 of the estimators in our
ensemble as

Eolge(x,0)] = peo(x)
Eolgc(x,0)%] — Eolge(x,0)) = 07 4(x)
Elg (%, 0m)dc (X, 0m:)] — Eolge(x,0m)]° = Ce
Cr.0,.,0 ,(X)

px) = ——5=

Uc,e

977170 ’ ( )
(89)
Note that by definition, we assume m # m' in Crg,, 0.,

We can now ask about the expected generalization
(out-of-sample) error for the ensemble

=FEr.co Z(Yi

i

=9z (xi,{0}))?

(90)
As in the single estimator case, we decompose the error
into a noise term, a bias-term, and a variance term. To
see this, note that

Ereco [C(X,gé(w))]
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Z(Yi — f(x) + f(xi) — 972 (x5, {6}))?

= Z Er.eol(yi — f(xi))? + (£ (x:) = 92 (x5, {0}))% + 2(yi — £(x:))(f (x3) — 92 (xs, {6})]

= 3008+ 3 Eeol(f6x) - 2 (e (1)) o)

where in the last line we have used the fact that E[y;] =

the second term as

f(x;) to eliminate the last term. We can further decompose

Erol(f(xi) — 92 (x:,{0}))°] = Brol(f(xi) — Er.0l3z (xi, {01)] + Er,0137 (xi, {63)] — 97 (xi, {6}))?]

=Erol(f(xi) — Ecolg

(x5, {01)))°] + Brol(Er.6ldz (xi, {0})] — 92 (x4, {6}))°]

+ 2B 0[(Er.[97 (xi, {0})] — 92 (xi, {01)) (f (xi) — Er0[92 (xi, {6})])
= (f(xi) = Brolgz (xi, {OD)? + Er[(92 (x5, {0}) — Er.[92 (xi, {01)])]

= Bias?(x;) + Var(x;),

where we have defined the bias of an aggregate predictor
as

Bias*(x) = (f(x) — Ecelgz (x,{0})]) (93)

and the variance as

Var(x) = Brel(92 (x.{0}) — Ecolgz (x. {01)])%]. (94)
|

(92)

So far the calculation for ensembles is almost iden-
tical to that of a single estimator. However, since the
aggregate estimator is a sum of estimators, its variance
implicitly depends on the correlations between the indi-
vidual estimators in the ensemble. Using the definition
of the aggregate estimator Eq. (88) and the definitions in
Eq. (89), we see that

Var(x) = Ecol(9z (x,{0}) — Ecl9z (x, {0})])°]

- # Z Er0[9c(%,0m)gc(x,0m)] — M? Z[M£,6’<X)]2

m,m’

1
= P(X)U%,e +

This last formula is the key to understanding the power
of random ensembles. Notice that by using large ensem-
bles (M — c0), we can significantly reduce the variance,
and for completely random ensembles where the mod-
els are uncorrelated (p(x) = 0), maximally suppresses
the variance! Thus, using the aggregate predictor beats
down fluctuations due to finite-sample effects. The key,
as the formula indicates, is to decorrelate the models as
much as possible while still using a very large ensemble.
One can be worried that this comes at the expense of a
very large bias. This turns out not to be the case. When
models in the ensemble are completely random, the bias
of the aggregate predictor is just the expected bias of a

— p(x)
Lo

(

single model

Thus, for a random ensemble one can always add more
models without increasing the bias. This observation lies
behind the immense power of random forest methods dis-
cussed below. For other methods, such as bagging, we
will see that the bootstrapping procedure actually does
increase the bias. But in many cases, this increase in bias
is negligible compared to the reduction in variance.
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FIG. 27 Why combining models? On the left we show that
by combining simple linear hypotheses (grey lines) one can
achieve better and more flexible classifications (dark line),
which is in stark contrast to the case in which one only uses
a single perceptron hypothesis as shown on the right.

2. Summarizing the Theory and Intuitions behind Ensembles

Before discussing specific methods, let us briefly sum-
marize why ensembles have proven so successful in many
ML applications. Dietterich ( , )
identifies three distinct shortcomings that are fixed by
ensemble methods: statistical, computational, and rep-
resentational. These are explained in the following dis-
cussion from Ref. ( , ):

The first reason is statistical. When the
learning set is too small, a learning algorithm
can typically find several models in the hy-
pothesis space H that all give the same per-
formance on the training data. Provided their
predictions are uncorrelated, averaging sev-
eral models reduces the risk of choosing the
wrong hypothesis. The second reason is com-
putational. Many learning algorithms rely on
some greedy assumption or local search that
may get stuck in local optima. As such, an en-
semble made of individual models built from
many different starting points may provide
a better approximation of the true unknown
function than any of the single models. Fi-
nally, the third reason is representational. In
most cases, for a learning set of finite size, the
true function cannot be represented by any
of the candidate models in H. By combin-
ing several models in an ensemble, it may be
possible to expand the space of representable
functions and to better model the true func-
tion.

The increase in representational power of ensembles
can be simply visualized. For example, the classification
task shown in Fig. 27 reveals that it is more advanta-
geous to combine a group of simple hypotheses (verti-
cal or horizontal lines) than to utilize a single arbitrary
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linear classifier. This of course comes with the price of
introducing more parameters to our learning procedure.
But if the problem itself can never be learned through a
simple hypothesis, then there is no reason to avoid ap-
plying a more complex model. Since ensemble methods
reduce the variance and are often easier to train than a
single complex model, they are a powerful way of increas-
ing representational power (also called expressivity in the
ML literature).

Our analysis also gives several intuitions for how we
should construct ensembles. First, we should try to ran-
domize ensemble construction as much as possible to re-
duce the correlations between predictors in the ensemble.
This ensures that our variance will be reduced while min-
imizing an increase in bias due to correlated errors. Sec-
ond, the ensembles will work best for procedures where
the error of the predictor is dominated by the variance
and not the bias. Thus, these methods are especially well
suited for unstable procedures whose results are sensitive
to small changes in the training dataset.

Finally, we note that although the discussion above
was derived in the context of continuous predictors such
as regression, the basic intuition behind using ensembles
applies equally well to classification tasks. Using an en-
semble allows one to reduce the variance by averaging the
result of many independent classifiers. As with regres-
sion, this procedure works best for unstable predictors
for which errors are dominated by variance due to finite
sampling rather than bias.

B. Bagging

BAGGing, or Bootstrap AGGregation, first introduced
by Leo Breiman, is one of the most widely employed and
simplest ensemble-inspired methods ( , ).
Imagine we have a very large dataset £ that we could
partition into M smaller data sets which we label
{L1,...,Lar}. If each partition is sufficiently large to
learn a predictor, we can create an ensemble aggregate
predictor composed of predictors trained on each subset
of the data. For continuous predictors like regression,
this is just the average of all the individual predictors:

1 M
Gz (x) = 37 > 9e.(%). (98)
i=1

For classification tasks where each predictor predicts a
class label j € {1,...,J}, this is just a majority vote of
all the predictors,

gz (x) = arg]rrlaxz Ige,(x) = 7l, (99)

where I[g,,(x) = j] is an indicator function that is equal
to one if gz, (x) = j and zero otherwise. From the the-



oretical discussion above, we know that this can signifi-
cantly reduce the variance without increasing the bias.

While simple and intuitive, this form of aggregation
clearly works only when we have enough data in each par-
titioned set £;. To see this, one can consider the extreme
limit where £; contains exactly one point. In this case,
the base hypothesis g¢, (x) (e.g. linear regressor) becomes
extremely poor and the procedure above fails. One way
to circumvent this shortcoming is to resort to empir-
ical bootstrapping, a resampling technique in statis-
tics introduced by Efron (Efron, 1979) (see accompany-
ing box and Fig. 28). The idea of empirical bootstrap-
ping is to use sampling with replacement to create new
“bootstrapped” datasets {LPS,... L7} from our origi-
nal dataset £. These bootstrapped datasets share many
points, but due to the sampling with replacement, are
all somewhat different from each other. In the bagging
procedure, we create an aggregate estimator by replac-
ing the M independent datasets by the M bootstrapped
estimators:

M
R 1
97°%(x) = i > gers(x). (100)
=1
and
M
92°(x) = argmax Y I[g ns(x) = jl. (101)
J i=1

This bootstrapping procedure allows us to construct an
approximate ensemble and thus reduce the variance. For
unstable predictors, this can significantly improve the
predictive performance. The price we pay for using boot-
strapped training datasets, as opposed to really partition-
ing the dataset, is an increase in the bias of our bagged es-
timators. To see this, note that as the number of datasets
M goes to infinity, the expectation with respect to the
bootstrapped samples converges to the empirical distri-
bution describing the training data set p.(x) (e.g. a delta
function at each datapoint in £) which in general is dif-
ferent from the true generative distribution for the data
p(x).

In Fig. 29 we demonstrate bagging with a perceptron
(linear classifier) as the base classifier that constitutes
the elements of the ensemble. It is clear that, although
each individual classifier in the ensemble performs poorly
at classification, bagging these estimators yields reason-
ably good predictive performance. This raises questions
like why bagging works and how many bootstrap samples
are needed. As mentioned in the discussion above, bag-
ging is effective on “unstable” learning algorithms where
small changes in the training set result in large changes
in predictions (Breiman, 1996). When the procedure is
unstable, the prediction error is dominated by the vari-
ance and one can exploit the aggregation component of
bagging to reduce the prediction error. In contrast, for
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a stable procedure the accuracy is limited by the bias
introduced by using bootstrapped datasets. This means
that there is an instability-to-stability transition point
beyond which bagging stops improving our prediction.

Bootstrap

MO
) T replications

|

M:@)

Bootstrap
samples

Training
samples

FIG. 28 Shown here is the procedure of empirical bootstrap-
ping. The goal is to assess the accuracy of a statistical quan-
tity of interest, which in the main text is illustrated as the
sample median M, (D). We start from a given dataset D and
bootstrap B size n datasets D*™, ... . D*(5) called the boot-
strap samples. Then we compute the statistical quantity of
interest on these bootstrap samples to get the median M;(k),
for k =1,---,B. These are then used to evaluate the accu-
racy of M, (D) (see also box on Bootstrapping in main text).
It can be shown that in the n — oo limit the distribution
of M3™ would be a Gaussian centered around M,, (D) with
variance o2 defined by Eq. (102) scales as 1/n.



Brief Introduction to Bootstrapping

Suppose we are given a finite set of n data points
D = {X;,---,X,} as training samples and our
job is to construct measures of confidence for our
sample estimates (e.g. the confidence interval or
mean-squared error of sample median estimator).
To do so, one first samples n points with re-
placement from D to get a new set D*()
{Xf(1)7~-~ ,X,*L(l)}, called a bootstrap sample,
which possibly contains repetitive elements. Then
we repeat the same procedure to get in total B
such sets: D*) ... D*B) The next step is to
use these B bootstrap sets to get the bootstrap
estimate of the quantity of interest. For example,
let M) = Median(D*®)) be the sample median
of bootstrap data D**). Then we can construct
the variance of the distribution of bootstrap medi-
ans as :

B
Vars(M) = 2= 3 (M3 i) (o)
k=1

where

1 B
rx *(k)
My =S M;

n
k=1

(103)

is the mean of the median of all bootstrap sam-
ples. Specifically, Bickel and Freedman (

, ) and Singh ( , ) showed
that in the n — oo limit, the distribution of the
bootstrap estimate will be a Gaussian centered
around M, (D) = Median(Xy,--- , X,) with stan-
dard deviation proportional to 1/4/n. This means
that the bootstrap distribution M,*L — M,, approxi-
mates fairly well the sampling distribution M, —M
from which we obtain the training data D. Note
that M is the median based on which the true dis-
tribution D is generated. In other words, if we plot
the histogram of {Mﬁ(k)}szl, we will see that in
the large n limit it can be well fitted by a Gaus-
sian which sharp peaks at M, (D) and vanishing
variance whose definition is given by Eq. (102) (see
Fig. 28).

C. Boosting

Another powerful and widely used ensemble method is
Boosting. In bagging, the contribution of all predictors
is weighted equally in the bagged (aggregate) predictor.
However, in principle, there are myriad ways to combine
different predictors. In some problems one might prefer
to use an autocratic approach that emphasizes the best
predictors, while in others it might be better to opt for
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FIG. 29 Bagging applied to the perceptron learning

algorithm (PLA). Training data size n = 500, number of
bootstrap datasets B = 25, each contains 50 points. Colors
corresponds to different classes while the marker indicates the
how these points are labelled: cross for true label and circle
for that obtained by bagging. Each gray dashed line indicates
the prediction made, based on every bootstrap set while the
dark dashed black line is the average of these.

more ‘democratic’ ways as is done in bagging. In all cases,
the idea is to build a strong predictor by combining many
weaker classifiers.

In boosting, an ensemble of weak classifiers {gx(x)}
is combined into an aggregate, boosted classifier. How-
ever, unlike bagging, each classifier is associated with a
weight oy that indicates how much it contributes to the
aggregate classifier

M
ga(x) = Z kg (), (104)
K=1

where >, oy, = 1. For the reasons outlined above, boost-
ing, like all ensemble methods, works best when we com-
bine simple, high-variance classifiers into a more complex
whole.

Here, we focus on “adaptive boosting” or AdaBoost,
first proposed by Freund and Schapire in the mid 1990s
( ) ) , >

, ). The basic idea behind AdaBoost, is
to form the aggregate classifier in an iterative process.
Importantly, at each iteration we reweight the error func-
tion to reinforce data points where the aggregate classifier
performs poorly. In this way, we can successively ensure
that our classifier has good performance over the whole
dataset.

We now discuss the AdaBoost procedure in greater
detail. Suppose that we are given a data set L =
{(zi,yi),i = 1,--- ,N} where &; € X and y; € Y =
{+1,—1}. Our objective is to find an optimal hypoth-
esis/classifier ¢ : X — Y to classify the data. Let



H = {g: X — Y} be the family of classifiers available
in our ensemble. In the AdaBoost setting, we are con-
cerned with the classifiers that perform somehow better
than “tossing a fair coin”. This means that for each clas-
sifier, the family H can predict y; correctly at least half
of the time.
We construct the boosted classifier as follows:
e Initialize w;—;(x,) =1/N,n=1,--- | N.
eFort=1---,T, do:

1. Select from H a hypothesis g; that minimizes
the weighted error

§ wt .’1}1

2. Let oy =
data x, by

ht wz) # yz) (105)

exp[—atynge(x
Wip1 (@)  wi(@n,) [ th d ”)],
t
where Z, = 25:1 wy (X, )e~*¥n9:(Tn) ensures
all weights add up to unity.

e Output g4 (x) = sign (23:1 atht(w)>

There are many theoretical and empirical studies on
the performance of AdaBoost but they are beyond the
scope of this review. We refer interested readers to the
extensive literature on boosting ( , ).

D. Random Forests

True

False True False

-
«mm

FIG. 30 Example of a decision tree. For an input observation
x, its label y is predicted by traversing it from the root all
the way down the leaves, following branches it satisfies.

We now briefly review one of the most widely used and
versatile algorithms in data science and machine learning,
Random Forests (RF). Random Forests is an ensemble
method widely deployed for complex classification tasks.

41

A random forest is composed of a family of (randomized)
tree-based classifier decision trees (discussed below). De-
cision trees are high-variance, weak classifiers that can
be easily randomized, and as such, are ideally suited for
ensemble-based methods. Below, we give a brief high-
level introduction to these ideas.

A decision tree uses a series of questions to hierarchi-
cally partition the data. Each branch of the decision tree
consists of a question that splits the data into smaller
subsets (e.g. is some feature larger than a given num-
ber? See Fig. 30), with the leaves (end points) of the
tree corresponding to the ultimate partitions of the data.
When using decision trees for classification, the goal is to
construct trees such that the partitions are informative
about the class label (see Fig. 30). It is clear that more
complex decision trees lead to finer partitions that give
improved performance on the training set. However, this
generally leads to overfitting, limiting the out-of-sample
performance. For this reason, in practice almost all deci-
sion trees use some form of regularization (e.g. maximum
depth for the tree) to control complexity and reduce over-
fitting. Decision trees also have extremely high variance,
and are often extremely sensitive to many details of the
training data. This is not surprising since decision trees
are learned by partitioning the training data. Therefore,
individual decision trees are weak classifiers. However,
these same properties make them ideal for incorporation
in an ensemble method.

In order to create an ensemble of decision trees, we
must introduce a randomization procedure. As discussed
above, the power of ensembles to reduce variance only
manifests when randomness reduces correlations between
the classifiers within the ensemble. Randomness is usu-
ally introduced into random forests in one of three dis-
tinct ways. The first is to use bagging and simply “bag”
the decision trees by training each decision tree on a dif-
ferent bootstrapped dataset ( , ). Strictly
speaking, this procedure does not constitute a random
forest but rather a bagged decision trees. The second
procedure is to only use a different random subset of
the features at each split in the tree. This “feature
bagging” is the distinguishing characteristic of random
forests ( , ; Ho, ). Using feature bag-
ging reduces correlations between decision trees that can
arise when only a few features are strongly predictive
of the class label. Finally, extremized random forests
(ERFs) combine ordinary and feature bagging with an
extreme randomization procedure where splitting is done
randomly instead of using optlmahty criteria (see for de-
tails Refs. ( , )). Even
though this reduces the predlctlve power of each indi-
vidual decision tree, it still often improves the predictive
power of the ensemble because it dramatically reduces
correlations between members and prevents overfitting.

Examples of the kind of decision surfaces found by de-
cision trees, random forests, and Adaboost are shown in
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FIG. 31 Classifying Iris dataset with aggregation models for
scikit learn tutorial. This dataset seeks to classify iris flow-
ers into three types (labeled in red, blue, or yellow) based on
a measurement of four features: septal length septal width,
petal length, and petal width. To visualize the decision sur-
face, we trained classifiers using only two of the four potential
features (e..g septal length, septal width). Each row corre-
sponds to a different subset of two features and the columns
to a Decision Tree with 10-fold CV (first column), Random
Forest with 30 trees and 10-fold CV (second column) and
AdaBoost with 30 base hypotheses (third column). Decision
surface learned is highlighted by color shades. See the corre-
sponding tutorial for more details (Pedregosa el al., 2011)

Fig. 31. We invite the reader to check out the correspond-
ing scikit-learn tutorial for more details of how these are
implemented in python (Pedregosa et al., 2011).

There are many different types of decision trees and
training procedures. A full discussion of decision trees
(and random forests) lies beyond the scope of this review
and we refer readers to the extensive literature on these
topics (Lim et al., 2000; Loh, 2011; Louppe, 2014).

E. Gradient Boosted Trees and XGBoost

Before we turn to applications of these techniques, we
briefly discuss one final class of ensemble method that
has become increasingly popular in the last few years:
Gradient-Boosted Trees (Chen and Guestrin, 2016; Fried-
man, 2001). The basic idea of gradient-boosted trees is
to use intuition from boosting and gradient descent (in
particular Newton’s method, see Sec. IV) to construct
ensembles of decision trees. Like in boosting, the ensem-
bles are created by iteratively adding new decision trees
to the ensemble. In gradient boosted trees, a central role

is played by a cost function that measures the perfor-
mance of our ensemble. At each step, we compute the
gradient of the cost function with respect to the predicted
value of the ensemble and add trees that move us in the
direction of the gradient. Of course, this requires a clever
way of mapping gradients to decision trees. We give a
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brief overview of how this is done within XGboost, which
has recently been applied, to classify and rank transcrip-
tion factor binding in DNA sequences (Li ¢l al., 2018).
Below, we follow closely the XGboost tutorial.

Our starting point is a clever parametrization of deci-
sion trees. Here, we use notation where the decision tree
makes continuous predictions (regression trees), though
this can also easily be generalized to classification tasks.
We parametrize a decision tree g;(x) with K leaves by
two quantities: a function ¢(x) that maps each data point
to one of the leaves of the tree, ¢ : x € R? — {1,2..., K}
and a weight vector w € R” that assigns a predicted
value to each leaf. In other words, the decision tree’s
prediction for the datapoint x; is simply: q(x;) = wg(x,)-

In addition to a parametrization of decision trees, we
also have to specify a cost function which measures pre-
dictions. The prediction of our ensemble for a datapoint
(yi,x;) is given by

M
Ui = ga(x;) = Zgj(xi)a (106)

where g¢;(x;) is the prediction of the j-th decision tree
on datapoint x;, and M is the number of members of
the ensemble. As discussed in the context of random
trees above, without regularization, decision trees tend
to overfit the data by dividing it into smaller and smaller
partitions. For this reason, our cost function is generally
composed of two terms, a term that measures the good-
ness of predictions on each datapoint, I;(y;, ¢;), which is
assumed to be differentiable and convex, and for each
tree in the ensemble, a regularization term (g;) that
does not depend on the data:

C<X79A) = Zl(yiagi> + Z Q(gj)’ (107)

where the index 7 runs over data points and the index j
runs over decision trees in our ensemble. In XGBoost,
the regularization function is chosen to be

T
A 2
Qg) =T+ 3 ; wf, (108)

with v and A regularization parameters that must be
chosen appropriately. Notice that this regularization pe-
nalizes both large weights on the leaves (similar to L2-
regularization) and having large partitions with many
leaves.

As in boosting, we form the ensemble iteratively. For
this reason, we define a family of predictors g; as

t
39 =3 gx) =3 4 gulxr). (109
j=1


http://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_iris.html
http://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_iris.html
https://xgboost.readthedocs.io/en/latest/model.html

Note that by definition yEM) = ga(x;). The central idea

is that for large ¢, each decision tree is a small pertur-
bation to the predictor (of order 1/K) and hence we can
perform a Taylor expansion on our loss function to second
order:

Wy 97 + g0(x2)) + Qg0)

WE

C =
1
~ Ci_1 + AC,

<.
Il

(110)

with
_ S(t-1) 1 2
AC, = bil(ys, 9, 7 )ge(xi) + iaigt(xi> +Q(g¢), (111)

where

A(tfl))

a; = 8g§t—1)l(yi,yi (112)

bi = (g, 9.

(113)
We then choose the t-th decision tree g; to minimize AC;.
This is almost identical to how we derived the Newton
method update in the section on gradient descent, see
Sec. 1V.

We can actually derive an expression for the param-
eters of g, that minimize AC; analytically. To simplify
notation, it is useful to define the set of points x; that get
mapped to leaf j: I; = {i: ¢;(x;) = j} and the functions
B; = Zielj b, and A; = Zielj a;. Notice that in terms
of these quantities, we can write

T
1
AC; = Z[ijj + i(AJ + )\J)wf] + AT,

=1

(114)

where we made the t-dependence of all parameters im-
plicit. To find the optimal wj;, just as in Newton’s method
we take the gradient of the above expression with respect
to w; and set this equal to zero, to get

wi? = —AjBi 5 (115)
Plugging this expression into AC; gives
opt 1 . J2
AC :—§;m+w. (116)

It is clear that AC;? " measures the in-sample performance
of g; and we should find the decision tree that minimizes
this value. In principle, one could enumerate all possi-
ble trees over the data and find the tree that minimizes
ACP*. However, in practice this is impossible. Instead,
an approximate greedy algorithm is run that optimizes
one level of the tree at a time by trying to find optimal
splits of the data. This leads to a tree that is a good local
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FIG. 32 Using Random Forests (RFs) to classify Ising Phases.
(Top) Accuracy of RFs for classifying the phase of samples
from the Ising mode for the training set (blue), test set (red),
and critical region (green) using coarse trees with a few leaves
(triangles) and fine decision trees with many leaves (filled cir-
cles). RFs were trained on samples from ordered and disor-
dered phases but were not trained on samples from the critical
region. (Bottom) The time it takes to train RFs scales linearly
with the number of estimators in the ensemble.

minimum of AC{?* which is then added to the ensemble.
We emphasize that this is only a very high level sketch of
how the algorithm works. In practice, additional regular-
ization such as shrinkage and feature subsampling is also
used. In addition, there are many numerical and techni-
cal tricks used for the approximate algorithm and how to
find splits of the data that give good decision trees (

3 )'

F. Applications to the Ising model and Supersymmetry
Datasets

We now illustrate some of these ideas using two exam-
ples drawn from physics: (i) classifying the phases of the
spin configurations of the 2D-Ising model above and be-
low the critical temperature using random forests and (ii)
classifying Monte-Carlo simulations of collision events in
the SUSY dataset as supersymmetric or standard using
an XGBoost implementation of gradient-boosted trees.
Both examples were analyzed in Sec. VII.C using logistic
regression. Here we show that on the Ising dataset, the



RFs perform significantly better than logistic regression
models whereas gradient boosted trees seem to yield an
accuracy of about 80%, comparable to published results.
The two accompanying Jupyter notebooks discuss practi-
cal details of implementing these examples and the read-
ers are encouraged to experiment with the notebooks.

The Ising dataset used for classification by RFs here
is identical to that used to study logistic regression in
Sec. VII.C. We assign a label to each state according to
its phase: 0 if the state is disordered, and 1 if it is ordered.
We divide the dataset into three categories according to
the temperature at which samples are drawn: ordered
(T'/J < 2.0), near-critical (2.0 < T/J < 2.5) and disor-
dered (T'/J > 2.5) (see Figure 20). We use the ordered
and disordered states to train a random forest and eval-
uate our learned model on a test set of unseen ordered
and disordered states (test sets). We also ask how well
our RF can predict the phase of samples drawn in the
critical region (i.e. predict whether the temperature of
a critical sample is above or below the critical tempera-
ture). Since our model is never trained on samples in the
critical region, prediction in this region is a test of the
algorithm’s ability to generalize to new regions in phase
space.

The results of fits using RFs to predict phases are
shown in Figure 32. We used two types of RF classifiers,
one where the ensemble consists of coarse decision trees
with a few leaves and another with finer decision trees
with many leaves (see corresponding notebook). RFs
have extremely high accuracy on the training and test
sets (over 99%) for both coarse and fine trees. How-
ever, notice that the RF consisting of coarse trees per-
form extremely poorly on samples from the critical region
whereas the RF with fine trees classifies critical samples
with an accuracy of nearly 85%. Interestingly, and unlike
with logistic regression, this performance in the critical
region requires almost no parameter tuning. This is be-
cause, as discussed above, RFs are largely immune to
overfitting problems even as the number of estimators in
the ensemble becomes large. Increasing the number of es-
timators in the ensemble does increase performance but
at a large cost in computational time (Fig. 32 bottom).

In the second application of ensemble methods to
physics-related datasets, we used the XGBoost imple-
mentation of gradient boosted trees to classify Monte-
Carlo collisions from the SUSY dataset. With default
parameters using a small subset of the data (100, 000 out
of the full 5,000,000 samples), we were able to achieve
a classification accuracy of about 79%, which could be
improved to nearly 80% after some fine-tuning (see ac-
companying notebook). This is comparable to published
results ( ) ) and those obtained using lo-
gistic regression in earlier chapters. One nice feature of
ensemble methods such as XGBoost is that they auto-
matically allow us to calculate feature scores (Fscores)
that rank the importance of various features for clas-
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FIG. 33 Feature Importance Scores in SUSY dataset from
applying XGBoost to 100,000 samples. See Notebook 10 for
more details.

sification. The higher the Fscore, the more important
the feature for classification. Figure 33 shows the feature
scores from our XGBoost algorithm for the production of
electrically-charged supersymmetric particles (x=£) which
decay to W bosons and an electrically neutral supersym-
metric particle x°, which is invisible to the detector. The
features are a mix of eight directly measurable quanti-
ties from the detector, as well as ten hand crafted fea-
tures chosen using physics knowledge. Consistent with
the physics of these supersymmetric decays in the lepton
channel, we find that the most informative features for
classification are the missing transverse energy along the
vector defined by the charged leptons (Axial MET) and
the missing energy magnitude due to xo.

IX. AN INTRODUCTION TO FEED-FORWARD DEEP
NEURAL NETWORKS (DNNS)

Over the last decade, neural networks have emerged
as the one of most powerful and widely-used supervised
learning techniques. Deep Neural Networks (DNNs) have
a long history ( , : , ), but
remerged to prominence after a rebranding as “Deep
Learning” in the mid 2000s (

, ). DNNs truly caught the atten-
tion of the wider machine learning community and indus-
try in 2012 when Alex Krizhevsky, Ilya Sutskever, and
Geoff Hinton used a GPU-based DNN model (AlexNet)
to lower the error rate on the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) by an incred-
ible twelve percent from 28% to 16% ( ,

). Just three years later, a machine learning group
from Microsoft achieved an error of 3.57% using an ultra-
deep residual neural network (ResNet) with 152 layers
( , )! Since then, DNNs have become the
workhorse technique for many image and speech recogni-
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tion based machine learning tasks. The large-scale indus-
trial deployment of DNNs has given rise to a number of
high-level libraries and packages (Caffe, Keras, Pytorch,
and TensorFlow) that make it easy to quickly code and
deploy DNNSs.

Conceptually, it is helpful to divide neural networks
into four categories: (i) general purpose neural networks
for supervised learning, (ii) neural networks designed
specifically for image processing, the most prominent ex-
ample of this class being Convolutional Neural Networks
(CNNs), (iii) neural networks for sequential data such as
Recurrent Neural Networks (RNNs), and (iv) neural net-
works for unsupervised learning such as Deep Boltzmann
Machines. Here, we will limit our discussions to the first
two categories (unsupervised learning is discussed later
in the review). Though increasingly important for many
applications such as audio and speech recognition, for
the sake of brevity, we omit a discussion of sequential
data and RNNs from this review. For an introduction
to RNNs and LSTM networks see Chris Olah’s blog, and
Chapter 13 of ( ) ) as well as the introduction
to RNNs in Chapter 10 of ( ) ) for
sequential data.

Due to the number of recent books on deep learning
(see for example Michael Nielsen’s introductory online
book ( , ) and the more advanced (

, )), the goal of this section is to give a high-
level introduction to the basic ideas behind of DNNs,
and provide some practical knowledge for coding simple
neural nets for supervised learning tasks. This section
assumes the reader is familiar with the basic concepts
introduced in earlier sections on logistic and linear re-
gression. Throughout, we strive to provide intuition be-
hind the inner workings of DNNs, as well as highlight
limitations of present-day algorithms.

The influx of corporate and industrial interests has
rapidly transformed the field in the last few years. This
massive influx of money and researchers has given rise to
new dogmas and best practices that change rapidly. As
with most intellectual fields experiencing rapid expan-
sion, many commonly accepted heuristics many turn out
not to be as powerful as thought ( , ),
and widely held beliefs not as universal as once imagined
( , ; , ). This is especially
true in modern neural networks where results are largely
empirical and heuristic and lack the firm footing of many
earlier machine learning methods. For this reason, in
this review we have chosen to emphasize tried and true
fundamentals, while pointing out what, from our current
vantage point, seem like promising new techniques. The
field is rapidly evolving and readers are urged to read
papers and to implement these algorithms themselves in
order to gain a deep appreciation for the incredible power
of modern neural networks, especially in the context of
image, speech, and natural language processing, as well
as limitations of the current methods.
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In physics, DNNs and CNNs have already found
numerous applications. In statistical physics, they
have been applied to detect phase transitions in 2D
Ising ( , ) and Potts (

, ) models, lattice gauge theories (
, ), and different phases of polymers (
, ). It has also been shown that deep neural net-
works can be used to learn free-energy landscapes (

, ). At the same time, methods from
statistical physics have been applied to the field of deep
learning to study the thermodynamic efficiency of learn-
ing rules ( , ) to explore the hy-
pothesis space that DNNs span, make analogies between
training DNNs and spin glasses ( , ;

, ), and to characterize phase transi-
tions with respect to network topology in terms of er-
rors ( , ). In relativistic hydrodynam-
ics, deep learning has been shown to capture features of
non-linear evolution and has the potential to accelerate
numerical simulations ( , ), while in me-
chanics CNNs have been used to predict eigenvalues of

photonic crystals ( , ). Recently, DNNs
have been used to improve the efficiency of Monte-Carlo
algorithms ( , ).

Deep learning has also found interesting applications
in quantum physics. Various quantum phase transi-
tions ( , ; , ;

b )

) can be detected and studied
using DNNs and CNNs, including the transverse-field
Ising model ( , ), topological
phases ( : ,b),
and even non- equlhbrlum many body locahzatlon (

) Y 7 I k)

, ). Representing quantum states
as DNNs ( , ; , ;

, ; , ) and quantum state
tomography ( , ) are among some of
the impressive achievements to reveal the potential of
DNNs to facilitate the study of quantum systems. Ma-
chine learning techniques involving neural networks were
also used to study quantum ( , ;

) ) ) )

, ; , ) and fault-
tolerant ( , ) error correc-
tion, estimate rates of coherent and incoherent quantum
processes ( , ), and the recognition of
state and charge configurations and auto-tuning in quan-
tum dots ( , ). In quantum information
theory, it has been shown that one can perform gate de-
compositions with the help of neural nets ( ,

). In lattice quantum chromodynamics, DNNs have
been used to learn action parameters in regions of pa-
rameter space where PCA fails ( ).
Last but not least, DNNs also found place in the study
of quantum control ( , ), and in scattering
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FIG. 34 Basic architecture of neural networks. (A)
The basic components of a neural network are stylized neu-
rons consisting of a linear transformation that weights the
importance of various inputs, followed by a non-linear activa-
tion function. (b) Neurons are arranged into layers with the
output of one layer serving as the input to the next layer.

theory to learn s-wave scattering length ( , )
of potentials.

A. Neural Network Basics

Neural networks (also called neural nets) are neural-
inspired nonlinear models for supervised learning. As
we will see, neural nets can be viewed as natural, more
powerful extensions of supervised learning methods such
as linear and logistic regression and soft-max methods.

1. The basic building block: neurons

The basic unit of a neural net is a stylized “neuron” 4
that takes a vector of inputs x = (1, 22, ..., 24) and pro-
duces a scalar output a;(x). A neural network consists of
many such neurons stacked into layers, with the output
of one layer serving as the input for the next (see Figure
34). The first layer in the neural net is called the input
layer, the middle layers are often called “hidden layers”,
and the final layer is called the output layer.

The exact function a; varies depending on the type of
non-linearity used in the neural network. However, in
essentially all cases a; can be decomposed into a linear
operation that weights the relative importance of the var-
ious inputs and a non-linear transformation o;(z) which
is usually the same for all neurons. The linear trans-
formation in almost all neural networks takes the form
of a dot 1()1;0d12c)t with a set of neuron-specific weights
1 1

w) = (w"” wy”, ... ,wg)) followed by re-centering with
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a neuron-specific bias b(%):

20 =w® . x 4@, (117)
In terms of z(Y) and the non-linear function o;(z), we can
write the full input-output function as

(118)

see Figure 34.

Historically in the neural network literature, common
choices of nonlinearities included step-functions (percep-
trons), sigmoids (i.e. Fermi functions), and the hyper-
bolic tangent. More recently, it has become more com-
mon to use rectified linear functions (ReLUs), leaky rec-
tified linear units (leaky ReLUs), and exponential linear
units (ELUs) (see Figure 35). Different choices of non-
linearities lead to different computational and training
properties for neurons. The underlying reason for this is
that we train neural nets using gradient descent based
methods, see Sec. IV, that require us to take derivatives
of the neural input-output function with respect to the
weights w(?) and the bias b®). Notice that the derivatives
of the aforementioned non-linearities o(z) have very dif-
ferent properties. The derivative of the perceptron is zero
everywhere except where the input is zero. This discon-
tinuous behavior makes it impossible to train perceptrons
using gradient descent. For this reason, until recently the
most popular choice of non-linearity was the tanh func-
tion or a sigmoid/Fermi function. However, this choice
of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the
activation function saturates and the derivative of the
output with respect to the weights tends to zero since
00c/0z — 0 for z > 1. Such “vanishing gradients” are
a feature of any saturating activation function (top row
of Fig. 35), making it harder to train deep networks. In
contrast, for a non-saturating activation function such as
ReLUs or ELUs, the gradients stay finite even for large
inputs.

2. Layering neurons to build deep networks: network
architecture.

The basic idea of all neural networks is to layer neurons
in a hierarchical fashion, the general structure of which is
known as the network architecture (see Fig. 34). In the
simplest feed-forward networks, each neuron in the in-
put layer of the neurons takes the inputs x and produces
an output a;(x) that depends on its current weights, see
Eq. (118). The outputs of the input layer are then treated
as the inputs to the next hidden layer. This is usually
repeated several times until one reaches the top or output
layer. The output layer is almost always a simple clas-
sifier of the form discussed in earlier sections: a logistic
regression or soft-max function in the case of categorical
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FIG. 35 Possible non-linear activation functions for neurons. In modern DNNs, it has become common to use non-linear
functions that do not saturate for large inputs (bottom row) rather than saturating functions (top row).

data (i.e. discrete labels) or a linear regression layer in
the case of continuous outputs. Thus, the whole neural
network can be thought of as a complicated nonlinear
transformation of the inputs x into an output ¢ that de-
pends on the weights and biases of all the neurons in the
input, hidden, and output layers.

The use of hidden layers greatly expands the represen-
tational power of a neural net when compared with a sim-
ple soft-max or linear regression network. Perhaps, the
most formal expression of the increased representational
power of neural networks (also called the expressivity) is
the universal approximation theorem which states that a
neural network with a single hidden layer can approxi-
mate any continuous, multi-input/multi-output function
with arbitrary accuracy. The reader is strongly urged
to read the beautiful graphical proof of the theorem in
Chapter 4 of Nielsen’s free online book ( , ).
The basic idea behind the proof is that hidden neurons
allow neural networks to generate step functions with ar-
bitrary offsets and heights. These can then be added
together to approximate arbitrary functions. The proof
also makes clear that the more complicated a function,
the more hidden units (and free parameters) are needed
to approximate it. Hence, the applicability of the ap-
proximation theorem to practical situations should not
be overemphasized. In physics, a good analogy are ma-
trix product states, which can approximate any quantum
many-body state to an arbitrary accuracy, provided the
bond dimension can be increased arbitrarily — a severe
requirement not met in any practical implementation of
the theory.

Modern neural networks generally contain multiple

hidden layers (hence the ‘deep’ in deep learning). There
are many ideas of why such deep architectures are fa-
vorable for learning. Increasing the number of layers in-
creases the number of parameters and hence the represen-
tational power of neural networks. Indeed, recent numer-
ical experiments suggests that as long as the number of
parameters is larger than the number of data points, cer-
tain classes of neural networks can fit arbitrarily labeled
random noise samples ( , ). This suggests
that large neural networks of the kind used in practice can
express highly complex functions. Adding hidden layers
is also thought to allow neural nets to learn more complex
features from the data. Work on convolutional networks
suggests that the first few layers of a neural network learn
simple, “low-level” features that are then combined into
higher-level, more abstract features in the deeper layers.
Other works suggest that it is computationally and al-
gorithmically easier to train deep networks rather than
shallow, wider nets, though this is still an area of major
controversy and active research ( , ).

Choosing the exact network architecture for a neural
network remains an art that requires extensive numer-
ical experimentation and intuition, and is often times
problem-specific. Both the number of hidden layers and
the number of neurons in each layer can affect the per-
formance of a neural network. There seems to be no
single recipe for the right architecture for a neural net
that works best. However, a general rule of thumb that
seems to be emerging is that the number of parameters in
the neural net should be large enough to prevent under-
fitting (see theoretical discussion in ( ,

))-
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Empirically, the best architecture for a problem de-
pends on the task, the amount and type of data that is
available, and the computational resources at one’s dis-
posal. Certain architectures are easier to train, while
others might be better at capturing complicated depen-
dencies in the data and learning relevant input features.
Finally, there have been numerous works that move be-
yond the simple deep, feed-forward neural network ar-
chitectures discussed here. For example, modern neural
networks for image segmentation often incorporate “skip
connections” that skip layers of the neural network (

, ). This allows information to directly propa-
gate to a hidden or output layer, bypassing intermediate
layers and often improving performance.

B. Training deep networks

In the previous section, we introduced the basic ar-
chitecture for neural networks. Here we discuss how to
efficiently train large neural networks. Luckily, the basic
procedure for training neural nets is the same as we used
for training simpler supervised learning algorithms, such
as logistic and linear regression: construct a cost/loss
function and then use gradient descent to minimize the
cost function. Neural networks differ from these simpler
supervised procedures in that generally they contain mul-
tiple hidden layers that make taking the gradient more
computationally difficult. We will return to this in the
next section which discusses the “backpropagation” algo-
rithm for computing gradients.

Like all supervised learning procedures, the first thing
one must do to train a neural network is to specify a loss
function. Given a data point (x;,y;), the neural network
makes a prediction ¢;(w), where w are the parameters
of the neural network. Recall that in most cases, the
top output layer of our neural net is either a continuous
predictor or a classifier that makes discrete (categorical)
predictions. Depending on whether one wants to make
continuous or categorical predictions, one must utilize a
different kind of loss function.

For continuous data, the loss functions that are com-
monly used to train neural networks are identical to those
used in linear regression, and include the mean squared
error

B = Y- sw)?, (119
where N is the number of data points, and the mean-
absolute error (i.e. L; norm)

B =y -l (120)
The full cost-function often includes additional terms

that implement regularization (e.g. Ly or Lo regulariz-
ers).
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For categorical data, the most commonly used loss
function is the cross-entropy (Eq.(76) and Eq.(81)), since
the output layer is often taken to be a logistic classifier
for binary data with two types of labels, or a soft-max
classifier if there are more than two types of labels. The
cross-entropy was already discussed extensively in earlier
sections on logistic regression and soft-max classifiers, see
Sec. VII. Recall that for classification of binary data, the
output of the top layer of the neural network is the prob-
ability ¢;(w) = p(y; = 1|x;; w) that data point ¢ is pre-
dicted to be in category 1. The cross-entropy between
the true labels y; € {0,1} and the predictions is given by

E(w)=-— Zyi log i (w) + (1 — y;) log [1 — g;(w)] .

More generally, for categorical data, y can take on M
values so that y € {0,1,..., M — 1}. For each datapoint
i, define a vector y;,, called a ‘one-hot’ vector, such that

1, ify;=m

= 121

Yim {0, otherwise. (121)

We can also define the probability that the neural net-

work assigns a datapoint to category m: §im (W) = p(y; =

m|x;; w). Then, the categorical cross-entropy is defined
as

n M-—1
E((W)) = — Z Z Yim log gzm(w)
i=1 m=0

+ (1 = Yim) log [1 — Gim (W)] . (122)

As in linear and logistic regression, this loss function is
often supplemented by additional terms that implement
regularization.

Having defined an architecture and a cost function,
we must now train the model. As with other supervised
learning methods, we make use of gradient descent-based
methods to optimize the cost function. Recall that the
basic idea of gradient descent is to update the parame-
ters w to move in the direction of the gradient of the cost
function Vi E(w). In Sec. IV, we discussed numerous
optimizers that implement variations of stochastic gra-
dient descent (SGD, Nesterov, RMSProp, Adam, etc.)
Most modern neural network packages, such as Keras,
allow the user to specify which of these optimizers they
would like to use in order to train the neural network.
Depending on the architecture, data, and computational
resources, different optimizers may work better on the
problem, though vanilla SGD is a good first choice.

Finally, we note that unlike in linear and logistic re-
gression, calculating the gradients for a neural network
requires a specialized algorithm, called backpropogation
(often abbreviated backprop) which forms the heart of
any neural network training procedure. Backpropaga-
tion has been discovered multiple times independently
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but was popularized for modern neural networks in 1985
( ) ). We will return to the
backpropagation algorithm after briefly discussing a sim-
ple example where we build a feed-forward deep neu-
ral network for classifying hand-written digits from the
MNIST dataset.

C. High-level specification of a neural network using Keras

We are now in position to implement our first neural
network for a classification problem. This can be done
with ease using the high-level Keras package. Below, we
walk the reader step by step through short snippets of
code explaining each step. Our purpose is to convince
the reader of the simplicity of open source DNN python
packages, and provide the necessary ‘activation energy’
for them to dig into the realm of numerical experiments
with DNNs. We postpone the detailed explanations of
the inner workings of the underlying algorithms, such as
backprop, to subsequent sections.

We begin by loading the required packages:

from __future__ import print_function, division
import keras

from keras.models import Sequential

from keras.layers import Dense

from keras.datasets import mnist

import matplotlib.pyplot as plt

Next, we load the data. We will be studying the MNIST
digit classification problem, introduced in Sec. VIL.E and
Notebook 11. The MNIST dataset is built into the Keras
package. It contains pre-defined training and test sets to
standardize the comparison of performance over different
network architectures. Each datapoint is a 28 x 28 pixel
image of a handwritten digit, with its corresponding label
belonging to one of the 10 digits. The size of each sam-
ple, i.e. the number of bare features used is N_features,
while the number of potential classification categories is
N_categories. First, we load the data and preprocess it
into the required shape (Nsamples; NVieatures). Each pixel
contains a greyscale value quantified by an integer be-
tween 0 and 255. To standardize the dataset, we normal-
ize the input data in the interval [0,1]. A representative
input sample is show in Fig. 36.

##### generate fictitious data

# input image dimensions

N_categories = 10 # 10 possible digits: zero thru
nine

N_features = 28*%28 # number of pixels in a single
image

# load MNIST data, shuffled and split between train
and test sets

(X_train, Y_train),
load_data(Q)

# reshape data

X_train = X_train.reshape(X_train.shape[0],
N_features) .astype( )

(X_test, Y_test) = mnist.
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FIG. 36 An example of an input datapoint from the MNIST
data set. Each datapoint is a 28 x 28-pixel image of a hand-
written digit, with its corresponding label belonging to one
of the 10 digits. Each pixel contains a greyscale value repre-
sented by an integer between 0 and 255.

X_test = X_test.reshape(X_test.shape[0], N_features)
.astype( )

# rescale data in interval [0,1]

X_train /= 255 # 256 nuances (counting from 0) in
the greyscale of image

X_test /= 255

# look at an example of data point

plt.matshow(X_train[20, :].reshape(28,28),cmap=

)
plt.show()
print(Y_train[20])

As we explained in Sec. VII.D, for computational reasons
it is more convenient to encode the classification variables
using so called one-hot categorical vectors, rather than
integers. Keras provides a function which readily does
this for us. Finally, we print the size of the training and
test datasets.

# convert class vectors to binary class matrices

Y_train = keras.utils.to_categorical(Y_train,
N_categories)

Y_test = keras.utils.to_categorical(Y_test,
N_categories)

print( , X_train.shape)
print( , Y_train.shape)
print(X_train.shape[0], )
print(X_test.shape[0], )

Now that the data has been preprocessed in one-hot
form, we can build our first neural network. Let’s cre-
ate an instance of Keras’ Sequential() class, and call
it model. As the name suggests, this class allows us to
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build DNNs layer by layer. We use the add() method
to attach layers to our model. For the purposes of our
introductory example, it suffices to focus on Dense lay-
ers for simplicity, but in subsequent examples we shall
demonstrate how to add dropout regularization and con-
volutional layers. Every Dense() layer accepts as its first
required argument an integer which specifies the number
of neurons. The type of activation function for the layer
is defined using the activation optional argument, the
input of which is the name of the activation function
in string format. Examples include 'relu’, ’tanh’,
"elu’, ’sigmoid’, ’softmax’, see Fig. 35. In order
for our DNN to work properly, we must ensure that
the numbers of input and output neurons for each layer
match. Therefore, we specify the shape of the input in
the first layer of the model explicitly using the optional
argument input_shape=(N_features,), see line 37 be-
low. The sequential construction of the model then al-
lows Keras to infer the correct input/output dimensions
of all hidden layers automatically. Hence, we only need
to specify the size of the softmax output layer to match
the number of categories, see line 45.

##### create deep neural network

# instantiate model

model = Sequential()

# add a dense all-to-all sigmoid layer

model .add(Dense (100, input_shape=(N_features,),
activation= ))

# add a dense all-to-all tanh layer

model .add(Dense (400, activation= ))
# add a dense all-to-all relu layer
model .add(Dense (400, activation= ))
# add a dense all-to-all elu layer
model .add(Dense (50, activation= ))

# add a dense soft-max layer
model .add(Dense(N_categories, activation=

)

Next, we choose the loss function according to which we
will train the DNN. For classification problems, this is the
cross-entropy, and since the output data was cast in cate-
gorical form, we choose the categorical_crossentropy
defined in Keras’ losses module. Depending on the
problem of interest, one can pick another suitable loss
function. To optimize the weights of the net, we choose
SGD. This algorithm is available to use under Keras
optimizers module, and we could use Adam() or any
other built-in algorithm as well. The parameters for the
optimizer, such as lr (learning rate) or momentum are
passed using the corresponding optional arguments of the
SGD() function. All available arguments can be found in
Keras’ online documentation. While the loss function
and the optimizer are essential for the training proce-
dure, to test the performance of the model one may want
to look at a particular metric of performance. For in-
stance, in categorical tasks one typically looks at their
“accuracy’, which is defined as the percentage of cor-
rectly classified data points. To complete the definition of
our model, we use the compile() method, with optional
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FIG. 37 Model accuracy of the DNN defined in the main text
to study the MNIST problem as a function of the training
epochs.

arguments for the optimizer, loss, and the validation
metric as follows:

##### choose loss function, optimizer, and metric
# compile the model
model.compile(
optimizer=keras.optimizers.SGD(1lr=0.01,
momentum=0.9),
loss=keras.losses.
categorical_crossentropy,
metrics=[ ]

)

Training the DNN is a one-liner using the fit(Q)
method of the Sequential class. The first two re-
quired arguments are the training input and output
data. As optional arguments, we specify the mini-
batch_size, the number of training epochs, and the test
or validation_data. To monitor the training procedure
for every epoch, we set verbose=True.

##### train model using minibatches

# train DNN

history=model.fit(X_train, Y_train,
batch_size=64,
epochs=10,
validation_data=(X_test, Y_test),
verbose=True

)

D. The backpropagation algorithm

In the last section, we saw how to deploy a high-level
package, Keras, to design and train a simple neural net-
work. This training procedure requires us to be able to
calculate the derivative of the cost function with respect
to all the parameters of the neural network (the weights
and biases of all the neurons in the input, hidden, and
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FIG. 38 Model loss of the DNN defined in the main text
to study the MNIST problem as a function of the training
epochs.

visible layers). A brute force calculation is out of the
question since it requires us to calculate as many gradi-
ents as parameters at each step of the gradient descent.
The backpropagation algorithm ( ,

) is a clever procedure that exploits the layered struc-
ture of neural networks to more efficiently compute gra-
dients (for a more detailed discussion with Python code
examples see Chapter 2 of ( , ))-

1. Deriving and implementing the backpropagation equations

At its core, backpropagation is simply the ordinary
chain rule for partial differentiation, and can be summa-
rized using four equations. In order see this, we must first
establish some useful notation. We will assume that there
are L layers in our network with [ = 1, ..., L indexing the
layer. Denote by wé i the weight for the connection from
the k-th neuron in layer [ — 1 to the j-th neuron in layer

l. We denote the bias of this neuron by bé-. By construc-
tion, in a feed-forward neural network the activation aé-

of the j-th neuron in the I-th layer can be related to the
activities of the neurons in the layer [ — 1 by the equation

a =0 (Zw pak bl> = (zé), (123)
where we have defined the linear weighted sum
2= ijkak + 0. (124)

By definition, the cost function E depends directly on
the activities of the output layer aJL. It of course also indi-
rectly depends on all the activities of neurons in lower lay-
ers in the neural network through iteration of Eq. (123).

ol

Let us define the error AJL of the j-th neuron in the L-th
layer as the change in cost function with respect to the
weighted input zJL

J -
8zj

(125)

This definition is the first of the four backpropagation
equations.

We can analogously define the error of neuron j in
layer [, Aé, as the change in the cost function w.r.t. the

weighted input z; :

OE OF
AL =20 = 220G, m
9zt OQal
j j
where ¢/(x) denotes the derivative of the non-linearity
o(-) with respect to its input evaluated at x. Notice
that the error function Aé- can also be interpreted as the
partial derivative of the cost function with respect to the

bias bé, since

OE Obs  OE

~ ol o2k~ oul

= — II
= o ()
where in the last line we have used the fact that
Obl/dzk = 1. This is the second of the four backprop-
agation equations.

We now derive the final two backpropagation equations
using the chain rule. Since the error depends on neurons
in layer [ only through the activation of neurons in the
subsequent layer [ + 1, we can use the chain rule to write

AL OF 72 OE 0z
i 32; N 6zl+1 8z§

— Z Al+1 82
(Z AlJrl l+1> (Zé) (III)

This is the third backpropagation equation. The final
equation can be derived by differentiating of the cost
function with respect to the weight wé i as

OE  0F 82

_ Al_ -1 v
aw;k a’k ( )

J
32 w]k

Together, Egs. (I), (II), (III), and (IV) define the four
backpropagation equations relating the gradients of the
activations of various neurons a , the weighted inputs
zb =3, wha) " +b}, and the errors AL, These equations
can be combined mto a simple, computationally efficient
algorithm to calculate the gradient with respect to all
parameters ( , ).



The Backpropagation Algorithm

1. Activation at input layer: calculate the activa-
tions ajl« of all the neurons in the input layer.

2. Feedforward: starting with the first layer, exploit
the feed-forward architecture through Eq. (123) to
compute 2! and a' for each subsequent layer.

3. Error at top layer: calculate the error of the top
layer using Eq. (I).

4. “Backpropagate” the error: use Eq. (III) to
propagate the error backwards and calculate Aé- for
all layers.

5. Calculate gradient: use Egs. (III) and (IV) to

IE IE
calculate o and Bul,

We can now see where the name backpropagation
comes from. The algorithm consists of a forward pass
from the bottom layer to the top layer where one calcu-
lates the weighted inputs and activations of all the neu-
rons. One then backpropagates the error starting with
the top layer down to the input layer and uses these errors
to calculate the desired gradients. This description makes
clear the incredible utility and computational efficiency
of the backpropagation algorithm. We can calculate all
the derivatives using a single “forward” and “backward”
pass of the neural network. This computational efficiency
is crucial since we must calculate the gradient with re-
spect to all parameters of the neural net at each step
of gradient descent. These basic ideas also underly al-
most all modern automatic differentiation packages such
as Autograd (Pytorch).

2. Computing gradients in deep networks: what can go wrong
with backprop?

Armed with backpropagation and gradient descent, it
seems like it should be straightforward to train any neural
network. However, until fairly recently it was widely be-
lieved that training deep networks was an extremely dif-
ficult task. One reason for this was that even with back-
propagation, gradient descent on large networks is ex-
tremely computationally expensive. However, the great
advances in computational hardware (and the widespread
use of GPUs) has made this a much less vexing prob-
lem than even a decade ago. It is hard to understate
the impact these advances in computing have had on the
practical utility of neural networks.

On a more technical and mathematical note, another
problem that occurs in deep networks, which transmit
information through many layers, is that gradients can
vanish or explode. This is, appropriately, known as the
problem of vanishing or exploding gradients. This prob-
lem is especially pronounced in neural networks that try
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to capture long-range dependencies, such as Recurrent
Neural Networks for sequential data. We can illustrate
this problem by considering a simple network with one
neuron in each layer. We further assume that all weights
are equal, and denote them by w. The behavior of the
backpropagation equations for such a network can be in-
ferred from repeatedly using Eq. (III):

L-1
Aj = A (w)" T] o/ (). (126)
j=0

Let us now also assume that the magnitude o’(z;) is fairly
constant and we can approximate o’(z;) ~ oj. In this
case, notice that for large L, the error Ajl- has very differ-
ent behavior depending on the value of wo{,. If wo(, > 1,
the errors and the gradient blow up. On the other hand,
if wo, < 1 the errors and gradients vanish. Only when
the weights satisfy wo{, &~ 1 and the neurons are not
saturated will the gradient stay well behaved for deep
networks.

This basic behavior holds true even in more compli-
cated networks. Rather than considering a single weight,
we can ask about the eigenvalues (or singular values) of
the weight matrices wék In order for the gradients to
be finite for deep networks, we need these eigenvalues to
stay near unity even after many gradient descent steps.
In modern feedforward and ReLU neural networks, this
is achieved by initializing the weights for the gradient de-
scent in clever ways and using non-linearities that do not
saturate, such as ReLUs (recall that for saturating func-
tions, ¢/ — 0, which will cause the gradient to vanish).
Proper initialization and regularization schemes such as
gradient clipping (cutting-off gradients with very large
values), and batch normalization also help mitigate the
vanishing and exploding gradient problem.

E. Regularizing neural networks and other practical
considerations

DNNs, like all supervised learning algorithms, must
navigate the bias-variance tradeoff. Regularization tech-
niques play an important role in ensuring that DNNs
generalize well to new data. The last five years have seen
a wealth of new specialized regularization techniques for
DNNSs beyond the simple Ly and Lo penalties discussed in
the context of linear and logistic regression, see Secs. VI
and VII. These new techniques include Dropout and
Batch Normalization. In addition to these specialized
regularization techniques, large DNNs seem especially
well-suited to implicit regularization that already takes
place in the Stochastic Gradient Descent (SGD) (

, ), cf. Sec. IV. The implicit stochasticity and
local-nature of SGD often prevents overfitting of spurious
correlations in the training data, especially when com-
bined with techniques such as early stopping. In this



section, we give a brief overview of these regularization
techniques.

1. Implicit regularization using SGD: initialization,
hyper-parameter tuning, and early stopping

The most commonly employed and effective optimizer
for training neural networks is SGD (see Sec. IV for other
alternatives). SGD acts as an implicit regularizer by in-
troducing stochasticity (from the use of mini-batches)
that prevents overfitting. In order to achieve good per-
formance, it is important that the weight initialization be
chosen randomly, in order to break any leftover symme-
tries. One common choice is drawing the weights from a
Gaussian centered around zero with some variance that
scales inversely with number of inputs to the neuron (

, ; , ). Since SGD is a lo-
cal procedure, as networks get deeper, choosing a good
weight initialization becomes increasingly important to
ensure that the gradients are well behaved. Choosing
an initialization with a variance that is too large or too
small will cause gradients to vanish and the network to
train poorly — even a factor of 2 can make a huge differ-
ence in practice ( , ). For this reason, it is
important to experiment with different variances.

The second important thing is to appropriately choose
the learning rate or step-size by searching over five log-
arithmic grid points ( , ). If the best
performance occurs at the edge of grid, repeat this pro-
cedure until the optimal learning rate is in the middle of
the parameters. Finally, it is common to center or whiten
the input data (just as we did for linear and logistic re-
gression).

A final and important form of regularization that is
often employed in practice is early stopping. The idea
of early stopping is to divide the training data into two
portions, the dataset we train on and a smaller validation
set that serves as a proxy for out-of-sample performance
on the test set. As we train the model, we plot both the
training error and the validation error. We expect the
training error to continuously decrease during training.
However, the validation error will eventually increase due
to overfitting. The basic idea of early stopping is to halt
the training procedure when the validation error starts to
rise (see Figures 37 and 38). This “early-stopping” proce-
dure ensures that we stop the training and avoid fitting
sample specific features in the data. Early stopping is
widely used and an essential tool in the deep learning
regularization toolbox.

2. Dropout

Another important regularization schemed that has
been widely adopted in the neural networks literature
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FIG. 39 Dropout During the training procedure neurons
are randomly “dropped out” of the neural network with some
probability p giving rise to a thinned network. This prevents
overfitting by reducing correlations among neurons and re-
ducing the variance in a method similar in spirit to ensemble
methods.

is Dropout ( ) ). The basic idea of
Dropout is to prevent overfitting by reducing spurious
correlations between neurons within the network by in-
troducing a randomization procedure similar to that un-
derlying ensemble models such as Bagging. Recall that
the basic idea behind ensemble methods is to train an
ensemble of methods that are created using a random-
ization procedure to ensure that the members of the en-
semble are uncorrelated, see Sec. VIII. This reduces the
variance of statistical predictions without creating too
much additional bias.

In the context of neural networks, it is extremely costly
to train an ensemble of networks, both from the point of
view of the amount of data needed as well as compu-
tational resources and parameter tuning. Dropout cir-
cumnavigates these problems by randomly dropping out
neurons (along with their connections) from the neural
network during each step of the training (see Figure 39).
Typically, for each mini-batch in the gradient descent
step, a neuron is dropped from the neural network with
a probability p. The gradient descent step is then per-
formed only on the weights of the “thinned” network of
individual predictors.

Since in the training, on average weights are only
present a fraction p of the time, predictions are made
by reweighing the weights by p: Wiest = PWerain- L he
learned weights can be viewed as some “average” weight
over all possible thinned neural network. This averag-
ing of weights is similar in spirit to the Bagging proce-
dure discussed in the context of ensemble models, see
Sec. VIII.



3. Batch Normalization

Batch Normalization is a regularization scheme that
has been quickly adopted by the neural network com-
munity since its introduction in 2015 ( ,

). The basic inspiration behind Batch Normalization
is the long-known observation that training in neural net-
works works best when the inputs are centered around
zero with respect to the bias. The reason for this is that
it prevents neurons from saturating and gradients from
vanishing in deep nets. In the absence of such center-
ing, changes in parameters in lower layers can give rise
to saturation effects in higher layers, and vanishing gra-
dients. The idea of Batch Normalization is to introduce
additional new “BatchNorm" layers that standardize the
inputs by the mean and variance of the mini-batch.

Consider a layer [ with d neurons whose inputs are
(z4,...,2}). We standardize each dimension so that

sl lec _ E[Zi]

o= B (127)

where the mean and expectation are taken over all sam-
ples in the mini-batch. One problem with this procedure
is that it may change the representational power of the
neural network. For example, for tanh non-linearities, it
may force the network to live purely in the linear regime
around z = 0. Since non-linearities are crucial to the
representational power of DNNs, this could dramatically
alter the power of the DNN. For this reason, one intro-
duces two new parameters w,lg and B,lc for each neuron that
can shift and scale the normalized input

Uk = Vilk + Bre- (128)
These new parameters are then learned just like the
weights and biases using backpropagation (since this is
just an extra layer for the chain rule). We initialize the
neural network so that at the beginning of training the
inputs are being standardized. Backpropagation than ad-
justs v and 8 during training.

In practice, Batch Normalization considerably im-
proves the learning speed by preventing gradients from
vanishing. However, it also seems to serve as a power-
ful regularizer for reasons that are not fully understood.
One plausible explanation is that in batch normalization,
the gradient for a sample depends not only on the sam-
ple itself but also on all the properties of the mini-batch.
Since a single sample can occur in different mini-batches,
this introduces additional randomness into the training
procedure which seems to help regularize training.

F. Deep neural networks in practice: examples

Now that we have gained sufficient high-level back-
ground knowledge about deep neural nets, let us discuss
how to use them in practice.

o4

1. Deep learning packages

In Sec. IX.C, we demonstrated that the numerical
implementation of DNNs is greatly facilitated by open
source python packages, such as Keras, TensorFlow, and
Pytorch, just to name a few. The complexity and learn-
ing curves for these packages differ, depending on the
reader’s level of familiarity with python. There are DNN
packages written in other languages, such as Caffe which
is written in C++, but we do not use them in this review.

Keras is a high-level framework which does not require
any knowledge about the inner workings of the under-
lying deep learning algorithms. Coding DNNs in Keras
is particularly simple, see Sec. IX.C, and allows one to
quickly grasp the big picture behind the theoretical con-
cepts which we introduced above. However, for advanced
applications, which may require more direct control over
the operations in between the layers, Keras’ high-level
design may prove insufficient.

If one opens up the Keras black box, one will find that
it wraps the functionality of another package — Tensor-
Flow®. Over the last years, TensorFlow, which is sup-
ported by Google, has been gaining popularity and has
become the preferred library for deep learning and is used
in Kaggle competitions, university classes, and industry.
In TensorFlow one constructs data flow graphs, the nodes
of which represent mathematical operations, while the
edges encode multidimensional tensors (data arrays). A
deep neural net can then be thought of as a graph with
a particular architecture. One needs to understand this
concept well before one can truly unleash TensorFlow’s
full potential. Unfortunately, the learning curve can be
rather steep for TensorFlow, and requires a certain de-
gree of perseverance and time to internalize the underly-
ing idea.

There are, however, many other open source packages
which allow for control over the inter- and intra-layer op-
erations, without the need to introduce computational
graphs. Such an example is Pytorch, which offers li-
braries for automatic differentiation of tensors at GPU
speed. As we discussed above, manipulating neural nets
boils down to fast array multiplication and contraction
operations and, therefore, the torch.nn library often
does the job of providing enough access and controlla-
bility to manipulate the linear algebra operations under-
lying deep neural nets.

For the benefit of the reader, we have prepared Jupyter
notebooks for DNNs using all three packages for the deep
learning problems we discuss below. We invite the reader
to carefully examine the differences in the code which
should help them decide on which package they prefer to
use.

8 While Keras can also be used with a Theano backend, we do not
discuss this here since Theano support has been discontinued.
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2. Approaching the learning problem

Let us now analyze a typical procedure for using neu-
ral networks to solve supervised learning problems. As
can be seen already from the code snippets in Sec. IX.C,
constructing a deep neural network to solve ML problems
is a multiple-stage process. Generally, one can identify a
set of key steps:

1. Collect and pre-process the data.
. Define the model and its architecture.
. Choose the cost function and the optimizer.

. Train the model.

Ot s W N

. Evaluate and study the model performance
on the validation and test data.

6. Adjust the hyperparameters (and, if neces-
sary, network architecture) to optimize per-
formance for the specific dataset.

At this point, a few remarks are in order. While we
treat Step 1 above as consisting mainly of loading and re-
shaping a dataset prepared ahead of time, we emphasize
that getting data into an appropriate form is an insepa-
rable part of the learning process and usually difficult.

One of the first questions we are usually faced with is
how to determine the sizes of the training and test data
sets. The MNIST dataset, which has 10 classification
categories, uses 80% of the available data for training
and 20% for testing. On the other hand, the ImageNet
data which has 1000 categories is split 50% — 50%. As
a rule of thumb, the more classification categories there
are in the task, the closer the sizes of the training and
test datasets should be in order to prevent overfitting.
Once the size of the training set is fixed, it is common to
reserve 20% of it for validation, which is used to fine-tune
the hyperparameters of the model.

The next issue is how to choose the right hyperpa-
rameters to begin training the model with. For instance,
according to Bengio, the optimal learning rate is often an
order of magnitude lower than the smallest learning rate
that blows up the loss ( , ). One should also
keep in mind that, depending on how ambitious a prob-
lem one is tackling, training the model can take a consid-
erable amount of time. This can severely slow down any
progress on improving the model in Step 6. Therefore, it
is usually a good idea to play with a small enough per-
centage of the training data to get a rough feeling about
the correct hyperparameter regimes, the usefulness of the
DNN architecture, and to debug one’s code. The size of
this small ‘play set’ should be such that training on it can
be done fast and in real time to allow to quickly adjustthe
hyperparameters.

Also related to data preprocessing is the standardiza-
tion of the dataset. It has been found empirically that if
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the original values of the data differ by orders of magni-
tude, training can be slowed down or impeded. This is
related to the vanishing and exploding gradient problem
in backprop discussed in Sec. IX.D. Therefore, one uses
two tricks here: (i) all data should be mean-centered,
i.e. from every data point we subtract the mean of the
entire dataset, and (ii) rescale the data, for which there
are two ways: if the data is approximately normally
distributed, one can rescale by the standard deviation.
Otherwise, it is typically rescaled by the maximum abso-
lute value so the rescaled data lies in the interval [—1,1].
Rescaling ensures that the weights of the DNN are of a
similar order of magnitude.

Oftentimes insufficient data serves as a major bottle-
neck on the ultimate performance of DNNs. In such cases
one can consider data augmentation, i.e. distorting data
samples from the existing dataset in some way to enhance
size the dataset. Obviously, if one knows how to do this,
one already has partial information about the important
features in the data.

Whereas it is always possible to view Steps 1-5 as
generic and independent of the particular problem we
are trying to solve, it is only when these steps are put
together in Step 6 that the real benefit of deep learning
is revealed, compared to less sophisticated methods such
as regression or bagging, see Secs. VI, VII, and VIII. The
optimal choice of network architecture, cost function, and
optimizer is determined by the properties of the training
and test datasets, which are only revealed when we try to
improve the model. A typical strategy of exploring the
hyperparameter landscape is to use grid searches.

While there is no single recipe to approach all ML prob-
lems, we believe that the above to-do list gives a good
overview and can be a useful guideline to the layman.
Furthermore, as should be clear, this ‘recipe’ can be ap-
plied to general ML tasks, not just DNNs. We refer the
reader to Sec. XI for more useful hints and tips on how
to use the validation data during the training process.

3. SUSY dataset

In this section, we discuss a DNN approach to the
SUSY dataset introduced in the context of logistic regres-
sion in Sec. VII.C.2, and Bagging in Sec. VIIL.F. There
is, however, an interest in using deep learning methods
to automatically discover collision features. Benchmark
results using Bayesian Decision Trees from a standard
physics package, and five-layer neural networks using the
dropout algorithm were presented in the original pa-
per ( , ) to compare the ability of deep
learning to bypass the need of using such high-level fea-
tures. For a detailed description of the SUSY dataset
and the corresponding classification problem, we refer the
reader to Sec. VII.C.2. Our goal here is to study system-
atically the accuracy of a DNN classifier as a function of
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FIG. 40 Grid search results for the test set accuracy of the
DNN for the SUSY problem as a function of the learning rate
and the size of the dataset. The data used includes all high-
and low-level features.

the learning rate and the dataset size.

Unlike the MNIST example where we used Keras, here
we use the opportunity to introduce the Pytorch package,
c.f. corresponding notebook. We leave the discussion of
the code-specific details for the accompanying notebook.

To classify the SUSY collision events, we construct a
DNN with two dense hidden layers of 200 and 100 neu-
rons, respectively. We use ReLU activation between the
input and the hidden layers, and a sofmax output layer.
We apply dropout regularization on the weights of the
DNN. Similar to MNIST, we use the cross-entropy as a
cost function and minimize it using SGD with batches of
size 10% of the training data size. We train the DNN
over 10 epochs.

Figure 40 shows the accuracy of our DNN on the test
data as a function of the learning rate and the size of the
dataset. It is considered good practice to start with a
logarithmic scale to search through the hyperparameters,
to get an overall idea for the order of magnitude of the
optimal values. In this example, the performance peaks
at the largest size of the dataset and a learning rate of
0.1, and is of the order of 80%. For comparison, in the
original study (Baldi et al., 2014), the authors achieved
~ 89% by using the entire dataset with 5,000,000 points
and a more sophisticated network architecture, trained
using GPUs.

4. Phases of the 2D Ising model

In this section, we discuss a DNN approach to the Ising
dataset introduced in Sec. VII.C.1. We study the prob-
lem of classifying the states of the 2D Ising model with
a DNN (Tanaka and Tomiya, 2017a), focussing on the
model performance as a function of both the number of
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FIG. 41 Grid search results for the test set accuracy (top)
and the critical set accuracy (bottom) of the DNN for the
Ising classification problem as a function of the learning rate
and the number of hidden neurons.

hidden neurons and the learning rate. The discussion is
accompanied by a notebook written in TensorFlow. Asin
the previous example, the interested reader can find the
discussion of the code-specific details in the notebook.

To classify whether a given spin configuration is in the
ordered or disordered phase, we construct a minimalistic
model for a DNN with a single hidden layer containing
a number of hidden neurons. The network architecture
thus includes a ReLU-activated input layer, the hidden
layer, and the softmax output layer. We pick the cate-
gorical cross-entropy as a cost function and minimize it
using SGD with mini-batches of size 100. We train the
DNN over 100 epochs.

Figures 41 show the outcome of a grid search over a
log-spaced learning rate and the number of neurons in the
hidden layer. We see that about 10 neurons are enough
at a learning rate of 0.1 to get to a very high accuracy on
the test set. However, if we aim at capturing the physics
close to criticality, clearly more neurons are required to
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reliably learn the more complex correlations in the Ising
states.

X. CONVOLUTIONAL NEURAL NETWORKS (CNNS)

One of the core lessons of physics is that we should ex-
ploit symmetries and invariances when analyzing physi-
cal systems. Properties such as locality and translational
invariance are often built directly into the physical laws.
Our statistical physics models often directly incorporate
everything we know about the physical system being an-
alyzed. For example, we know that in many cases it is
sufficient to consider only local couplings in our Hamilto-
nians, or work directly in momentum space if the system
is translationally invariant. This basic idea, tailoring our
analysis to exploit additional structure, is a key feature of
modern physical theories from general relativity, through
gauge theories, to critical phenomena.

Like physical systems, many datasets and supervised
learning tasks also possess additional symmetries and
structure. For instance, consider a supervised learning
task where we want to label images from some dataset as
being pictures of cats or not. Our statistical procedure
must first learn features associated with cats. Because
a cat is a physical object, we know that these features
are likely to be local (groups of neighboring pixels in the
two-dimensional image corresponding to whiskers, tails,
eyes, etc). We also know that the cat can be anywhere
in the image. Thus, it does not really matter where in
the picture these features occur (though relative positions
of features likely do matter). This is a manifestation of
translational invariance that is built into our supervised
learning task. This example makes clear that, like many
physical systems, many ML tasks (especially in the con-
text of computer vision and image processing) also pos-
sess additional structure, such as locality and translation
invariance.

The all-to-all coupled neural networks in the previous
section fail to exploit this additional structure. For exam-
ple, consider the image of the digit ‘four’ from the MNIST
dataset shown in Fig. 36. In the all-to-all coupled neural
networks used there, the 28 x 28 image was considered
a one-dimensional vector of size 282 = 796. This clearly
throws away lots of the spatial information contained in
the image. Not surprisingly, the neural networks com-
munity realized these problems and designed a class of
neural network architectures, convolutional neural net-
works or CNNs, that take advantage of this additional
structure (locality and translational invariance) (

, ). Furthermore, what is especially interesting
from a physics perspective is that it has been recently
shown that these CNN architectures are intimately re-
lated to models such as tensor networks ( ,

; , ) and, in particu-
lar, MERA-like architectures that are commonly used in
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physical models for quantum condensed matter systems

( , 2017).

A. The structure of convolutional neural networks

A convolutional neural network is a translationally in-
variant neural network that respects locality of the in-
put data. CNNs are the backbone of many modern deep
learning applications and here we just give a high-level
overview of CNNs that should allow the reader to delve
directly into the specialized literature. The reader is also
strongly encouraged to consult the excellent, succinct
notes for the Stanford CS231n Convolutional Neural Net-
works class developed by Andrej Karpathy and Fei-Fei Li
(https://cs231n.github.io/). We have drawn heavily
on the pedagogical style of these notes in crafting this
section.

There are two kinds of basic layers that make up a
CNN: a convolution layer that computes the convolution
(as a mathematical operation, see this practical guide to
image kernels) of the input with a bank of filters, and
pooling layers that coarse-grain the input while main-
taining locality and spatial structure, see Fig. 42. For
two-dimensional data, a layer [ is characterized by three
numbers: height H;, width W;, and depth D;. The height
and width correspond to the sizes of the two-dimensional
spatial (W, H;)-plane (in neurons), and the depth D; the
number of filters in that layer. All neurons correspond-
ing to a particular filter have the same parameters (i.e.
shared weights and bias).

In general, we will be concerned with local spatial fil-
ters (often called a receptive field in analogy with neuro-
science) that take as inputs a small spatial patch of the
previous layer at all depths. For instance, a square filter
of size I’ is a three-dimensional array of size F'x F'x D;_1.
The convolution consists of running this filter over all lo-
cations in the spatial plane. To demonstrate how this
works in practice, let us a consider the simple example
consisting of a one-dimensional input of depth 1, shown
in Fig. 43. In this case, a filter of size FF x 1 x 1 can
be specified by a vector of weights w of length F'. The
stride, S, encodes by how many neurons we translate the
filter by when performing the convolution. In addition,
it is common to pad the input with P zeros (see Fig. 43).
For an input of width W, the number of neurons (out-
puts) in the layer is given by (W — F +2P)/S + 1. We
invite the reader to check out this visualization of the
convolution procedure for a square input of unit depth.
After computing the filter, the output is passed through
a non-linearity, a ReLU in Fig. 43. In practice, one of-
ten inserts a BatchNorm layer before the non-linearity,
cf. Sec. IX.E.3.

These convolutional layers are interspersed with pool-
ing layers that coarse-grain spatial information by per-
forming a subsampling at each depth. One common pool-
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FIG. 42 Architecture of a Convolutional Neural Network (CNN). The neurons in a CNN are arranged in three
dimensions: height (H), width (W), and depth (D). For the input layer, the depth corresponds to the number of channels (in
this case 3 for RGB images). Neurons in the convolutional layers calculate the convolution of the image with a local spatial
filter (e.g. 3 x 3 pixel grid, times 3 channels for first layer) at a given location in the spatial (W, H)-plane. The depth D of the
convolutional layer corresponds to the number of filters used in the convolutional layer. Neurons at the same depth correspond
to the same filter. Neurons in the convolutional layer mix inputs at different depths but preserve the spatial location. Pooling
layers perform a spatial coarse graining (pooling step) at each depth to give a smaller height and width while preserving the
depth. The convolutional and pooling layers are followed by a fully connected layer and classifier (not shown).

ing operation is the max pool. In a max pool, the spatial
dimensions are coarse-grained by replacing a small region
(say 2 x 2 neurons) by a single neuron whose output is the
maximum value of the output in the region. In physics,
this pooling step is very similar to the decimation step
of RG (Iso et al., 2018; Koch-Janusz and Ringel, 2017;
Lin et al., 2017; Mehta and Schwab, 2014). This gener-
ally reduces the dimension of outputs. For example, if
the region we pool over is 2 x 2, then both the height
and the width of the output layer will be halved. Gen-
erally, pooling operations do not reduce the depth of the
convolutional layers because pooling is performed sepa-
rately at each depth. A simple example of a max-pooling
operation is shown in Fig. 44. There are some studies
suggesting that pooling might be unnecessary (Springen-
berg et al., 2014), but pooling layers remain a staple of
most CNNs.

In a CNN, the convolution and max-pool layers are
generally followed by an all-to-all connected layer and a
high-level classifier such as a soft-max. This allows us
to train CNNs as usual using the backprop algorithm,
cf. Sec. IX.D. From a backprop perspective, CNNs are
almost identical to fully connected neural network archi-
tectures except with tied parameters.

Apart from introducing additional structure, such as
translational invariance and locality, this convolutional
structure also has important practical and computational
benefits. All neurons at a given layer represent the same
filter, and hence can all be described by a single set of
weights and biases. This reduces the number of free pa-
rameters by a factor of H x W at each layer. For example,
for a layer with D = 10?2 and H = W = 102, this gives
a reduction in parameters of nearly 10°! This allows for
the training of much larger models than would otherwise
be possible with fully connected layers. We are familiar

with similar phenomena in physics: e.g. in translation-
ally invariant systems we can parametrize all eigenmodes
by specifying only their momentum (wave number) and
functional form (sin, cos, etc.), while without translation
invariance much more information is required.

B. Example: CNNs for the 2D Ising model

The inclusion of spatial structure in CNNs is an impor-
tant feature that can be exploited when designing neural
networks for studying physical systems. In the accompa-
nying notebook, we used Pytorch to implement a simple
CNN composed of a single convolutional layer followed by
a soft-max layer. We varied the depth of the CNN layer
from unity — a single set of weights and one bias — to a
depth of 50 distinct weights and biases. The CNN was
then trained using SGD for five epochs using a training
set consisting of samples from far in the paramagnetic
and ordered phases. The results are shown in Fig. 45.
The CNN achieved a 100% accuracy on the test set for
all architectures, even for a CNN with depth one. We also
checked the performance of the CNN on samples drawn
from the near-critical region for temperatures 1" slightly
above and below the critical temperature T,. The CNN
performed admirably even on these critical samples with
an accuracy of between 80% and 90%. As is the case
with all ML and neural networks, the performance on
parts of the data that are missing from the training set
is considerably worse than on test data that is similar
to the training data. This highlights the importance of
properly constructing an accurate training dataset and
the considerable obstacles of generalizing to novel situ-
ations. We encourage the interested reader to explore
the corresponding notebook and design better CNN ar-
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FIG. 43 Two examples to illustrate a one-dimensional
convolutional layer with ReLU nonlinearity. Convolu-
tional layer for a spatial filter of size F' for a one-dimensional
input of width W with stride S and padding P followed by a
ReLU non-linearity.

chitectures with improved generalization performance on
the near-critical set.

The reader may wish to check out the second part of
the MNIST notebook for a discussion of CNNs applied to
the digit recognition using the high-level Keras package.
Regarding the SUSY dataset, we stress that the absence
of spatial locality in the collision features renders apply-
ing CNNs to that problem inadequate.

99

° °
° —_ °
° °

—

FIG. 44 Tllustration of Max Pooling. Illustration of max-
pooling over a 2 x 2 region. Notice that pooling is done at
each depth (vertical axis) separately. The number of outputs
is halved along each dimension due to this coarse-graining.

C. Pre-trained CNNs and transfer learning

The immense success of CNNs for image recognition
has resulted in the training of huge networks on enormous
datasets, often by large industrial research teams from
Google, Microsoft, Amazon, etc. Many of these mod-
els are known by name: AlexNet, GoogLeNet, ResNet,
InceptionNet, VGGNet, etc. Most researchers and prac-
titioners do not have the resources, data, or time to train
networks on this scale. Luckily, the trained models have
been released and are now available in standard packages
such as the Torch Vision library in Pytorch or the Caffe
framework. These models can be used directly as a basis
for fine-tuning in different supervised image recognition
tasks through a process called transfer learning.

The basic idea behind transfer learning is that the fil-
ters (receptive fields) learned by the convolution layers
of these networks should be informative for most im-
age recognition based tasks, not just the ones they were
originally trained for. In other words, we expect that,
since images reflect the natural world, the filters learned
by these CNNs should transfer over to new tasks with
only slight modifications and fine-tuning. In practice,
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FIG. 45 Single-layer convolutional network for classi-
fying phases in the Ising mode. Accuracy on test set and
critical samples for a convolutional neural network with sin-
gle layer of varying depth with filters of size 2, max-pool layer
with receptive field of size 2, followed by soft-max classifier.
Notice that the test accuracy is 100% even for a CNN of depth
one with a single set of weights. Accuracy on the near-critical
dataset is significantly below that for the test set.

this turns out to be true for many tasks one might be
interested in.

There are three distinct ways one can take a pre-
trained CNN and repurpose it for a new task. The follow-
ing discussion draws heavily on the notes from the course
(CS231n mentioned in the introduction to this section.

e Use CNN as fixed feature detector at top
layer. If the new dataset we want to train on is
small and similar to the original dataset, we can
simply use the CNN as a fixed feature detector and
retrain our classifier. In other words, we remove the
classifier (soft-max) layer at the top of the CNN and
replace it with a new classifier (linear SVM or soft-
max) relevant to our supervised learning problem.
In this procedure, the CNN serves as a fixed map
from images to relevant features (the outputs of the
top fully-connected layer right before the original
classifier). This procedure prevents overfitting on
small, similar datasets and is often a useful starting
point for transfer learning.

e Use CNN as fixed feature detector at inter-
mediate layer. If the dataset is small and quite
different from the dataset used to train the origi-
nal image, the features at the top level might not
be suitable for our dataset. In this case, one may
want to instead use features in the middle of the
CNN to train our new classifier. These features are
thought to be less fine-tuned and more universal
(e.g. edge detectors). This is motivated by the idea
that CNNs learn increasingly complex features the
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deeper one goes in the network (see discussion on
representational learning in next section).

e Fine-tune the CNN. If the dataset is large, in
addition to replacing and retraining the classifier
in the top layer, we can also fine-tune the weights
of the original CNN using backpropagation. One
may choose to freeze some of the weights in the
CNN during the procedure or retrain all of them
simultaneously.

All these procedures can be carried out easily by using
packages such as Caffe or the Torch Vision library in
PyTorch. PyTorch provides a nice python notebook that
serves as tutorial on transfer learning and the reader is
strongly urged to read the tutorials carefully if interested
in this topic.

XI. HIGH-LEVEL CONCEPTS IN DEEP NEURAL
NETWORKS

In the previous sections, we introduced deep neural
networks and discussed how we can use these networks
to perform supervised learning. Here, we take a step back
and discuss some high-level questions about the practice
and performance of neural networks. The first part of this
section presents a deep learning workflow inspired by the
bias-variance tradeoff. This workflow is especially rele-
vant to industrial applications where one is often trying
to employ neural networks to solve a particular problem.
In the second part of this section, we shift gears and ask
the question, why have neural networks been so success-
ful? We provide three different high-level explanations
that reflect current dogmas. Finally, we end the section
by discussing the limitations of supervised learning meth-
ods and current neural network architectures.

A. Organizing deep learning workflows using the bias-variance
tradeoff

Imagine that you are given some data and asked
to design a neural network for learning how to per-
form a supervised learning task. What are the best
practices for organizing a systematic workflow that
allows us to efficiently do this? Here, we present
a simple deep learning workflow inspired by think-
ing about the bias-variance tradeoff (see Figure 46).
This section draws heavily on Andrew Ng’s tuto-
rial at the Deep Learning School (available online
at  https://www.youtube.com/watch?v=F1ka6al13S9I)
which readers are strongly encouraged to watch.

The first thing we would like to do is divide the data
into three parts. A training set, a validation or dev
(development) set, and a test set. The test set is the
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data on which we want to make predictions. The dev set
is a subset of the training data we use to check how well
we are doing out-of-sample, after training the model on
the training dataset. We use the validation error as a
proxy for the test error in order to make tweaks to our
model. It is crucial that we do not use any of the test
data to train the algorithm. This is a cardinal sin in
ML. We thus suggest the following workflow:

Estimate optimal error rate (Bayes rate).—The
first thing one should establish is the difficulty of the
task and the best performance one can expect to achieve.
No algorithm can do better than the “signal” in the
dataset. For example, it is likely much easier to classify
objects in high-resolution images than in very blurry,
low-resolution images. Thus, one needs to establish
a proxy or baseline for the optimal performance that
can be expected from any algorithm. In the context of
Bayesian statistics, this is often called the Bayes rate.
Since we do not know this a priori, we must get an
estimate of this. For many tasks such as speech or object
recognition, we can approximate this by the performance
of humans on the task. For a more specialized task,
we would like to ask how well experts, trained at the
task, perform. This expert performance then serves as a
proxy for our Bayes rate.

Minimize underfitting (bias) on training data
set.—After we have established the Bayes rate, we want
to make sure that we are using a sufficiently complex
model to avoid underfitting on the training dataset.
In practice, this means comparing the training error
rate to the Bayes rate. Since the training error does
not care about generalization (variance), our model
should approach the Bayes rate on the training set. If
it does not, the bias of the DNN model is too large
and one should try training the model longer and/or
using a larger model. Finally, if none of these techniques
work, it is likely that the model architecture is not
well suited to the dataset, and one should modify the
neural architecture in some way to better reflect the un-
derlying structure of the data (symmetries, locality, etc.).

Make sure you are not overfitting.— Next, we
run our algorithm on the validation or dev set. If the
error is similar to the training error rate and Bayes rate,
we are done. If it is not, then we are overfitting the
training data. Possible solutions include, regularization
and, importantly, collecting more data. Finally, if
none of these work, one likely has to change the DNN
architecture.

If the validation and test sets are drawn from the same
distributions, then good performance on the validation
set should lead to similarly good performance on the
test set. (Of course performance will typically be slightly
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FIG. 46 Organizing a workflow for Deep Learning.
Schematic illustrating a deep learning workflow inspired by
navigating the bias-variance tradeoff (Figure based on An-
drew Ng’s talk at the 2016 Deep Learning School available at
https://www.youtube.com/watch?v=F1ka6al3S9I.) In this
diagram, we have assumed that there in no mismatch be-
tween the distributions the training and test sets are drawn
from.

worse on the test set because the hyperparameters were
fit to the validation set.) However, sometimes the train-
ing data and test data differ in subtle ways because, for
example, they are collected using slightly different meth-
ods, or because it is cheaper to collect data in one way
versus another. In this case, there can be a mismatch
between the training and test data. This can lead to
the neural network overfitting these small differences be-
tween the test and training sets, and a poor performance
on the test set despite having a good performance on
the validation set. To rectify this, Andrew Ng suggests
making two validation or dev sets, one constructed from
the training data and one constructed from the test data.
The difference between the performance of the algorithm
on these two validation sets quantifies the train-test mis-
match. This can serve as another important diagnostic
when using DNNs for supervised learning.

B. Why neural networks are so successful: three high-level
perspectives on neural networks

Having discussed the basics of neural networks, we con-
clude by giving three complementary perspectives on the
success of DNNs and Deep Learning. This high-level dis-
cussion reflects various dogmas and intuitions about the
success of DNNs and is in no way definitive or conclusive.
As the reader was already warned in the introduction to
DNNs, the field is rapidly expanding and many of these
perspectives may turn out to be only partially true or
even false. Nonetheless, we include them here as a guide-
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post for readers.

1. Neural networks as representation learning

One important and powerful aspect of the deep learn-
ing paradigm is the ability to learn relevant features
of the data with relatively little domain knowledge, i.e.
with minimal hand-crafting. Often, the power of deep
learning stems from its ability to act like a black box
that can take in a large stream of data and find good
features that capture properties of the data we are in-
terested in. This ability to learn good representations
with very little hand-tuning is one of the most attractive
properties of DNNs. Many of the other supervised learn-
ing algorithms discussed here (regression-based models,
ensemble methods such as random forests or gradient-
boosted trees) perform comparably or even better than
neural networks but when using hand-crafted features
with small-to-intermediate sized datasets.

The hierarchical structure of deep learning models is
thought to be crucial to their ability to represent com-
plex, abstract features. For example, consider the use
of CNNs for image classification tasks. The analysis of
CNNs suggests that the lower-levels of the neural net-
works learn elementary features, such as edge detectors,
which are then combined into higher levels of the net-
works into more abstract, higher-level features (e.g. the
famous example of a neuron that “learned to respond to
cats”) (Le, ). More recently, it has been shown that
CNNs can be thought of as performing tensor decompo-
sitions on the data similar to those commonly used in
numerical methods in modern quantum condensed mat-
ter ( , ).

One of the interesting consequences of this line of
thinking is the idea that one can train a CNN on one
large dataset and the features it learns should also be use-
ful for other supervised tasks. This results in the ability
to learn important and salient features directly from the
data and then transfer this knowledge to a new task. In-
deed, this ability to learn important, higher-level, coarse-
grained features is reminiscent of ideas like the renormal-
ization group (RG) in physics where the RG flows sep-
arate out relevant and irrelevant directions, and certain
unsupervised deep learning architectures have a natural
interpretation in terms of variational RG schemes (

’ )

2. Neural networks can exploit large amounts of data

With the advent of smartphones and the internet, there
has been an explosion in the amount of data being gen-
erated. This data-rich environment favors supervised
learning methods that can fully exploit this rich data
world. One important reason for the success of DNNs
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FIG. 47 Large neural networks can exploit the vast
amount of data now available. Schematic of how neural
network performance depends on amount of available data
(Figure based on Andrew Ng’s talk at the 2016 Deep Learn-
ing School available at https://www.youtube.com/watch?v=
Flka6al3S91I.)

is that they are able to exploit the additional signal in
large datasets for difficult supervised learning tasks. Fun-
damentally, modern DNNs are unique in that they con-
tain millions of parameters, yet can still be trained on
existing hardwares. The complexity of DNNs (in terms
of parameters) combined with their simple architecture
(layer-wise connections) hit a sweet spot between expres-
sivity (ability to represent very complicated functions)
and trainability (ability to learn millions of parameters).

Indeed, the ability of large DNNs to exploit huge
datasets is thought to differ from many other commonly
employed supervised learning methods such as Support
Vector Machines (SVMs). Figure 47 shows a schematic
depicting the expected performance of DNNs of differ-
ent sizes with the number of data samples and compares
them to supervised learning algorithms such as SVMs or
ensemble methods. When the amount of data is small,
DNNs offer no substantial benefit over these other meth-
ods and often perform worse. However, large DNNs seem
to be able to exploit additional data in a way other meth-
ods cannot. The fact that one does not have to hand
engineer features makes the DNN even more well suited
for handling large datasets. Recent theoretical results
suggest that as long as a DNN is large enough, it should
generalize well and not overfit ( , ).
In the data-rich world we live in (at least in the context
of images, videos, and natural language), this is a recipe
for success. In other areas where data is more limited,
deep learning architectures have (at least so far) been less
successful.
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3. Neural networks scale up well computationally

A final feature that is thought to underlie the success
of modern neural networks is that they can harness the
immense increase in computational capability that has
occurred over the last few decades. The architecture of
neural networks naturally lends itself to parallelization
and the exploitation of fast but specialized processors
such as graphical processing units (GPUs). Google and
NVIDIA set on a course to develop TPUs (tensor pro-
cessing units) which will be specifically designed for the
mathematical operations underlying deep learning archi-
tectures. The layered architecture of neural networks also
makes it easy to use modern techniques such as automatic
differentiation that make it easy to quickly deploy them.
Algorithms such as stochastic gradient descent and the
use of mini-batches make it easy to parallelize code and
train much larger DNNs than was thought possible fifteen
years ago. Furthermore, many of these computational
gains are quickly incorporated into modern packages with
industrial resources. This makes it easy to perform nu-
merical experiments on large datasets, leading to further
engineering gains.

C. Limitations of supervised learning with deep networks

Like all statistical methods, supervised learning using
neural networks has important limitations. This is es-
pecially important when one seeks to apply these meth-
ods, especially to physics problems. Like all tools, DNNs
are not a universal solution. Often, the same or better
performance on a task can be achieved by using a few
hand-engineered features (or even a collection of random
features). This is especially important for hard physics
problems where data (or Monte-Carlo samples) maybe
hard to come by.

Here we list some of the important limitations of su-
pervised neural network based models.

e Need labeled data.—Like all supervised learn-
ing methods, DNNs for supervised learning require
labeled data. Often, labeled data is harder to ac-
quire than unlabeled data (e.g. one must pay for
human experts to label images).

e Supervised neural networks are extremely
data intensive.—DNNs are data hungry. They
perform best when data is plentiful. This is doubly
so for supervised methods where the data must also
be labeled. The utility of DNNs is extremely lim-
ited if data is hard to acquire or the datasets are
small (hundreds to a few thousand samples). In
this case, the performance of other methods that
utilize hand-engineered features can exceed that of
DNNs.
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e Homogeneous data.—Almost all DNNs deal
with homogeneous data of one type. It is very hard
to design architectures that mix and match data
types (i.e. some continuous variables, some discrete
variables, some time series). In applications beyond
images, video, and language, this is often what is
required. In contrast, ensemble models like random
forests or gradient-boosted trees have no difficulty
handling mixed data types.

e Many physics problems are not about
prediction.—In physics, we are often not inter-
ested in solving prediction tasks such as classifi-
cation. Instead, we want to learn something about
the underlying distribution that generates the data.
In this case, it is often difficult to cast these ideas in
a supervised learning setting. While the problems
are related, it’s possible to make good predictions
with a “wrong” model. The model might or might
not be useful for understanding the physics.

Some of these remarks are particular to DNNs, oth-
ers are shared by all supervised learning methods. This
motivates the use of unsupervised methods which in part
circumnavigate these problems.

XIl. DIMENSIONAL REDUCTION AND DATA
VISUALIZATION

In this section, we will begin our foray into unsuper-
vised learning by way of data visualization. In machine
learning, data visualization is an important tool to iden-
tify structures such as correlations, invariances (symme-
tries) or irrelevant features (noise) in raw or processed
data. Conceivably, being able to capture these proper-
ties could help us design better predictive models. In
practice, however, the data we are dealing with is often
high-dimensional, which means that its visualization is
impossible or daunting at best. Part of the complication
is due to that low-dimensional representation of high-
dimensional data necessarily incurs information lost.

A simple way to visualize data is through pair-wise cor-
relations (i.e. pairwise scatter plots of all features). This
is useful in highlighting important correlations between
features when the number of features we are measuring
is relatively small. In practice, we often have to perform
dimensional reduction, namely, project the data onto a
lower dimensional space, which we refer to as the latent
space. In this section, we discuss both linear and nonlin-
ear methods for dimensional reduction with applications
in data visualization. We note that beyond data visu-
alization, the techniques introduced in this section can
be used in many other applications such as lossy data
compression and feature extraction.



A. Some of the challenges of high-dimensional data

Before we discuss specific dimensional reduction tech-
niques, we first highlight some of the difficulties in dealing
with high-dimensional data.

a. High-dimensional data lives near the edge of sample space
Geometry in high-dimensional space can be counterintu-
itive. One example that is pertinent to machine learning
is the following. Consider data distributed uniformly at
random in a D-dimensional hypercube C = [—e/2,¢/2]P,
where e is the edge length. Consider also a D-dimensional
hypersphere S of radius e/2 centered at the origin and
contained within C'. The probability that a data point
« drawn uniformly at random in C is contained within
S is well approximated by the ratio of the volume of &
to that of C : p(||z|, < e/2) ~ (1/2)P. Thus, as the
dimension of the feature space D increases, p goes to
zero exponentially fast. In other words, most of the data
will concentrate outside the hypersphere, in the corners
of the hypercube. In physics, this basic observation un-
derlies many properties of ideal gas such as the Maxwell
distribution and the equipartition theorem (see Chapter
3 of (Sethna, 2006) for instance).

b. Real-world data vs. uniform distribution Fortunately,
real-world data is not random or uniformly distributed!
In fact, real data usually lives in a much lower dimen-
sional space than the original space in which the fea-
tures are being measured (see FIG. 48). This is some-
times referred to as the “blessing of non-uniformity” (in
opposition to the curse of dimensionality). Data will
typically be locally smooth, meaning that a local vari-
ation of the data will not incur a change in the target
variable (Bishop, 2006). This idea is similar to statisti-
cal physics where properties of most systems with many
degrees of freedom can often be characterized by low-
dimensional “order parameters". In thermodynamics,
bulk properties of a gas of weakly interacting particles
can be simply described by the thermodynamic variables
that enter equation of states rather than the astronomi-
cally large dynamical variables (i.e. position and momen-
tum) of each particle in the gas is another instantiation
of this idea.

c. The crowding problem When performing dimensional
reduction, a common goal is to preserve pairwise dis-
tances between data points from the original space to
the latent space. This can be achieved fairly well if the
intrinsic dimensionality of the data (i.e. that in the orig-
inal space) is the same as the dimension of the latent
space. This can be understood in the example of the
Swiss roll (see FIG. 48). However, if one attempts to rep-
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FIG. 48 Data distributed in a three dimensional space (a)
that can effectively be described on a two-dimensional surface
(b). A common goal of dimensional reduction is to preserve
the local structure in the data. The embedding of (a) to (b)
preserves the local structure of the data as can be seen by
inspecting the color gradient.

12D 1D

\ 4

\ 4

FIG. 49 Ilustration of the crowding problem. (left) Consider
an original space in 2 dimensions with three pairwise equidis-
tant points. (right) Mapped space: if one wants to preserves
the ordination or distances in a 1D space ezactly, all points
must collapse onto one another.

resent the data in a space with dimensionality lower than
the intrinsic dimensionality of the data, a problem known
as the “crowding” can occur (Maaten and Hinton, 2008)
(see schematic, FIG. 49). Essentially, this means that
low-dimensional embedding of high-dimensional data are
often ambiguous. In other words, two points that are
far apart in the data space are mapped to the vicin-
ity of each other in the latent space. To alleviate this,
one needs to weaken the constraint we impose on our
visualization schemes. For instance, in the case of t-
distributed stochastic embedding (t-SNE) (Maaten and
Hinton, 2008), see below, one prioritizes the preservation
of short distances or local ordination rather than that of
all pairwise distances.

B. Principal component analysis (PCA)
One of the most commonly used dimensional reduc-

tion and visualization techniques is Principal Component
Analysis (PCA). The goal of PCA is to perform a linear
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FIG. 50 PCA seeks to find the set of orthogonal directions
for which that data has the largest variance. For the case
of 2D data, this can be seen as “fitting” an ellipse to the
data with the major axis corresponding to the first principal
component (direction of largest variance). Directions with
large variance are usually interpreted as the signal in the data
while directions with low variance are attributed to noise.

projection of the data onto a lower-dimensional subspace
where the variance is maximized. PCA is inspired by the
observation that in many cases relevant information is of-
ten contained in the directions with largest variance (see
FIG. 50). Intuitively, these directions encode the large-
scale “signal” as opposed to “noise” characterized by the
direction of small variance. PCA also seeks variable di-
rections while simultaneously reducing the redundancy
between the new basis vectors (Shlens, 2014). This is
done by requiring our new basis vectors (called principal
components) to be orthogonal. The data is then visual-
ized by projecting it onto a subspace spanned by a few
principal component basis vectors.

Surprisingly, such PCA-based projections often cap-
ture a lot of the large scale structure of many datasets.
For example, Figure 51 shows the projection of samples
drawn from the 2D Ising model at various temperatures
on the first two principal components. Despite living
in a 1600 dimensional space (the samples are 40 x 40
spins), a single principal component (i.e. a single direc-
tion in this 1600 dimensional space) can capture 50% of
the variability contained in our samples. One can ac-
tually easily check that this direction weights all 1600
spins equally and thus corresponds to the magnetization
order parameter. Thus, even without any prior physi-
cal knowledge, one can extract relevant order parameters
using a simple PCA-based projection. PCA is widely
employed in biological physics when working with high-
dimensional data. Recently, a correspondence between
PCA and Renormalization Group flows across the phase
transition in the 2D Ising model (Foreman et al., 2017) or
in a general setting (Bradde and Bialek, 2017) has been
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FIG. 51 (a) The first 2 principal component of the Ising
dataset with temperature indicated by the coloring. PCA
was performed on a joined dataset of 1000 samples taken at
each temperatures 7' = 0.25,0.5,--- ,4.0. Almost all the vari-
ance is explained in the first component which corresponds
to the magnetization order parameter (linear combination of
the features with weights all roughly equal). The paramag-
netic phase corresponds to the middle cluster and the left and
right clusters correspond to the symmetry-related ferromag-
netic phases (b) Log of the spectrum of the covariance matrix
versus rank ordering. Only one dimension has high-variance.

proposed. In statistical physics, PCA has also found ap-
plication in detecting phase transitions (Wetzel, 2017),
e.g. in the XY model on frustrated triangular and union
jack lattices (Wang and Zhai, 2017). It was also used
to classify dislocation patterns in crystals (Papanikolaou
et al,, 2017; Wang and Zhai, 2018). Physics has also in-
spired PCA-based algorithms to infer relevant features in
unlabelled data (Bény, 2018).

Concretely, consider N data points, {x1,...xy} that
live in a D-dimensional feature space RP. Without loss
of generality, we assume that the empirical mean & =



N~15" @; of these data points is zero’. Denote N x
D design matrix as X = [z1,x2,...;Zx]’ whose rows
are the data points and columns correspond to different
features. The D x D (symmetric) covariance matrix is
therefore

1

>(X)= —XTX.

] (129)

Notice that the j-th diagonal entry of 3(X) corresponds
to the variance of j-th feature and the X(X);; measures
the covariance (i.e. connected correlation in the language
of physics) between feature ¢ and feature j.

We are interested in finding a new basis for the data
that emphasizes highly variable directions while reduc-
ing redundancy between basis vectors. In particular, we
will look for a linear transformation that reduces the co-
variance between different features. To do so, we first
perform singular value decomposition (SVD) on design
matrix X, namely, X = USVT, where S is a diagonal
matrix of singular value s;, the orthogonal matrix U con-
tains (as its columns) the left singular vectors of X, and
similarly V' contains (as its columns) the right singular
vectors of X. With this, one can rewrite the covariance
matrix as

T T
N_ VSUTUSV

_V<N1)V

=VAVT.

(X)

(130)

where A is a diagonal matrix with eigenvalues \; in the
decreasing order along the diagonal (i.e. eigendecompo-
sition). It is clear that the right singular vectors of X
(i.e. columns of V') are principal directions of 3(X), and
the singular values of X are related to the eigenvalues of
covariance matrix 3(X) via \; = s?/(N — 1). To reduce
the dimensionality of data from D to D < D, we first con-
struct the D x D projection matrix Vp by selecting the
singular components with the D largest singular values.
The projection of the data from D to a D dimensional
space is simply Y =XVp.

The singular vector with the largest singular value (i.e
the largest variance) is referred to as the first principal
component, the singular vector with the second largest
singular value as the second principal component, and so
on. An important quantity is the ratio A;/ Zil A; which
is referred as the percentage of the explained variance
contained in a principal component (see FIG. 51.b).

It is common in data visualization to present the data
projected on the first few principal components. This is
valid as long as a large part of the variance is explained

9 We can always center around the mean: & < x; — &
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in those components. Low values of explained variance
may imply that the intrinsic dimensionality of the data
is high or simply that it cannot be captured by a lin-
ear representation. For a detailed introduction to PCA,
see the introductory tutorial by Shlens ( , ) or
Bishop ( , ).

C. Multidimensional scaling

Multidimensional scaling (MDS) is a non-linear dimen-
sional reduction technique which preserves the pairwise
distance or dissimilarity d;; between data points (

, ). Moving forward, we use the term “dis-
tance” and “dissimilarity” interchangeably. There are two
types of MDS: metric and non-metric. In metric MDS,
the distance matrix is computed under a pre-defined met-
ric and the latent coordinates Y are obtained by minimiz-
ing the difference between the distance matrix in the orig-
inal space (d;;(X)) and that in the latent space (d;;(Y")):
diz(Y)],

Y = arg m};nZwiﬂdij(X) — (131)

1<j

where w;; is a weight value: w;; > 0. The weight ma-
trix w;; is a set of free parameters that specify the level
of confidence (or precision) in the value of d;;(X). If
Euclidean metric is used, it is the same as PCA and is
usually referred to as classical scaling ( , ).

Thus MDS is often considered as a generalization of PCA.

In non-metric MDS, d;; can be any distance matrix. The
objective function is then to preserve the ordination in
the data, i.e. if di2(X) < d13(X) in the original space,
then in the latent space we should have d12(Y") < d13(Y).
Both MDS and PCA can be implemented using standard
Python packages such as Scikit. MDS algorithms typi-
cally have a scaling of O(IN?) where N corresponds to the
number of data points. In the case of PCA, if one is only
interested in a small fraction of the principal components
with largest variance (which is usually the case), efficient
implementations based on Lanczos methods can achieve
scaling of O(N?) for dense matrices ( )-

PCA and MDS are often among the first data v1suahza—
tion techniques one resorts to.

D. t-SNE

It is often desirable to preserve local structures in high-
dimensional dataset. This is, however, typically not pos-
sible using linear techniques such as PCA. Many non-
linear techniques such as non-classical MDS(

, ), self-organizing map ( , ), Isomap
( , ) and Locally Linear Embedding
( , ) have been proposed recently.
These techniques are generally good at preserving local


http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html

structures in the data but typically fail to capture struc-
tures at the larger scale such as the clusters in which the
data is organized( ). Recently,
t-stochastic neighbor embedding (t- SNE) has emerged as
one of the go-to methods for visualizing high-dimensional
data. t-SNE is a non-parametric method that utilizes
non-linear embeddings. When used appropriately, t-SNE
is a powerful technique for unraveling the hidden struc-
ture of high-dimensional datasets while at the same time
preserving locality. In physics, t-SNE has recently been
used to reduce the dimensionality and classify spin con-
figurations, generated with the help of Monte Carlo sim-
ulations, for the Ising ( , )
and Fermi-Hubbard models at finite temperatures (

, ). It was also applied to study clustering
transitions in random satisfiability problems which bears
close resemblance to spin glass models( , ).

The idea of stochastic neighbor embedding is to asso-
ciate a probability distribution to the neighborhood of
each data(note z € R®, s the number of features):

exp(—|lr: = z,|/20?)
> ki exp(— |z — zg||2/202)’

where p;|; can be interpreted as the likelihood that w;
is z;’s neighbor. o; are free parameters that are usually
fixed by fixing the local entropy (or equivalently the per-
plexity) of each data point'”. Intuitively, the Gaussian
likelihood (i.e. short-tailed) means that only points that
are nearby z; contribute to its probability distribution. A
symmetrized probability distribution is constructed from
(132) : pij = (pij; +pji)/(2N). This symmetrization en-
sures that even outliers contribute p;; and as such, have
meaningful embedding coordinates ( ,
).

t-SNE, on the other hand, constructs an equivalent
probability distribution in a low dimensional latent space
(with coordinates y; € RY, ¢t < s, with ¢ the dimension of
the latent space:

DPijy = (132)

(X +[lys —y;l1*) "
D (LA My — ywl[*) 71

The crucial point to note is that g¢;; is chosen to be a
long tail distribution. The choice of such a distribution
is meant to preserve short distance information (relative
neighborhoods) while strongly repelling two points that
are far apart in the original space (see FIG. 52). In order
to find the latent space coordinates y;, t-SNE minimizes
the Kullbach-Leibler divergence between ¢;; and p;;:

pi
L(pllg) = me log ( ’)

Gij = (133)

(134)

10 Regions of high-density therefore have a smaller o;.
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This is achieved by gradient descent, see Sec. I'V.

When visualizing data with ¢-SNE it is important to
understand what is being plotted. Here we list some
important properties that one should bear in mind when
analyzing t-SNE plots.

e t-SNE can rotate data. The KL divergence is in-
variant under rotations in the latent space, since it
only depends on the distance between points. For
this reason, t-SNE plots that are rotations of each
other should be considered equivalent.

e t-SNFE results are stochastic. Note that although
KL divergence is convex in the domain of distribu-
tions, it is generally not in the domain of ¢;; (i.e.
latent coordinate y). Therefore, in applying gradi-
ent descent the solution will depend on the initial
seed. Thus, the map obtained may vary depending
on the seed used and different ¢-SNE runs will give
slightly different results.

e t-SNE generally preserves short distance informa-
tion. As a rule of thumb, one should expect that
nearby points on the t-SNE points are also closeby
in the original space. The reason is the nature of
the mapping discussed in Figure 52.

e Scales are deformed in t-SNE. Since a scale-free dis-
tribution is used in the latent space, one should
not put too much emphasis on the meaning of the
variances of the any clusters observed in the latent
space.

e t-SNE is computationally intensive. Finally, a di-
rect implementation of ¢t-SNE has an algorithm
complexity of O(N?) which is only applicable to
small to medium data sets. Improved scaling
of the form O(NlogN) can be achieved at the
cost of approximating (134) by using Barnes-Hut
method( , ).

As an illustration, in Figure 53 we applied t-SNE to
a model consisting of thirty Gaussians (i.e. Gaussian
mixture model) whose means are uniformly distributed
in a forty-dimensional space. We compared the results
to a random two-dimensional projection and PCA. It is
clear that unlike more naive dimensional reduction tech-
niques, both PCA and ¢-SNE can identify the presence
of well-formed clusters. The ¢-SNE visualization cleanly
separates all the clusters while certain clusters blend to-
gether in the PCA plot. This is a direct consequence
of the fact that t-SNE keeps nearby points close together
while repelling points that are far apart. Figure 54 shows
t-SNE and PCA plots for MNIST dataset of ten hand-
written numerical digits (0-9). It is clear that the non-
linear nature of t-SNE makes it much better at capturing
and visualizing the complicated correlations between dig-
its than the PCA.
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FIG. 52 Illustration of the t-SNE embedding. x; points cor-
respond to the original high-dimensional points while the y;
points are the corresponding low-dimensional map points pro-
duced by t-SNE. Here we consider two points, x1, x2, that are
respectively “close” and “far” from zo. The high-dimensional
gaussian (short-tail) distribution p(z) of z¢’s neighbors is
shown in blue. The low-dimensional Cauchy (fat-tail) distri-
bution ¢(y) of zo’s neighbors is shown in red. The map point
yi, are obtained by minimizing the difference |g(y) — p(z:)|
(similar to minimizing the KL divergence). We see that point
z1 is mapped to short distances |y1 —yo|. In contrast, far-away
points such as x2 are mapped to relatively large distances
ly2 — yol.

XIll. CLUSTERING

In this section, we continue our discussion of unsuper-
vised learning methods. Unsupervised learning is con-
cerned with discovering structure in unlabeled data (for
instance learning local structures for data visualization,
see section XII). The lack of labels make unsupervised
learning much more difficult and subtle than its super-
vised counterpart. What is somewhat surprising is that
even without labels it is still possible to uncover and ex-
ploit the hidden structure in the data. Perhaps, the sim-
plest example of unsupervised learning is clustering. The
aim of clustering is to group unlabelled data into clusters
according to some similarity or distance measure. Infor-
mally, a cluster is thought of as a set of points sharing
some pattern or structure.

Clustering finds many applications throughout data
mining (Larsen and Aone, 1999), data compression and
signal processing (Gersho and Gray, 2012; MacKay,
2003). Clustering can be used to identify coarse features
or high level structures in an unlabelled dataset. The
technique also finds many applications in physical sci-
ences, ranging from detecting celestial emission sources
in astronomical surveys (Sander et al., 1998) to inferring
groups of genes and proteins with similar functions in
biology (Eisen et al., 1998), and building entanglement
classifiers (Lu et al, 2017). Clustering is perhaps the
simplest way to look for hidden structure in a dataset
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FIG. 53 Different visualizations of a gaussian mixture formed
of K = 30 mixtures in a D = 40 dimensional space. The
gaussians have the same covariance but have means drawn
uniformly at random in the space [—10,10]*°. (a) Plot of the
first two coordinates. The labels of the different gaussian is
indicated by the different colors. Note that in a realistic set-
ting, label information is of course not available, thus making
it very hard to distinguish the different “blobs". (b) Random
projection of the data onto a 2 dimensional space. (c) pro-
jection onto the first 2 principal components. Only a small
fraction of the variance is explained by those components (the
ratio is indicated along the axis). (d) t-SNE embedding (per-
plexity = 60, # iteration = 1000) in a 2 dimensional latent
space. t-SNE captures correctly the local structure of the
data.
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FIG. 54 Visualization of the MNIST handwritten dataset
(here N = 10000). (a) First two principal components. (b)
t-SNE applied with a perplexity of 30, a Barnes-Hut angle of
0.5 and 1000 gradient descent iterations. In order to reduce
the noise and speed up computation, PCA was first applied
to the dataset to project it down to 40 dimensions.

and for this reason, is among the most widely used and
employed data analysis and machine learning techniques.
The field of clustering is vast and there exists a



flurry of clustering methods suited for different purposes.
Some common considerations one has to take into ac-
count when choosing a particular method is the distribu-
tion of the clusters (overlapping/noisy clusters vs. well-
separated clusters), the geometry of the data (flat vs.
non-flat), the cluster size distribution (multiple sizes vs.
uniform sizes), the dimensionality of the data (low vs.
high dimensional) and the computational efficiency of the
desired method (small vs. large dataset).

We begin section XIII.A with a focus on popular prac-
tical clustering methods such as K-means clustering, hi-
erarchical clustering and density clustering. Our goal is
to highlight the strength, weaknesses and differences be-
tween these techniques, while laying out some of the theo-
retical framework required for clustering analysis. There
exist many more clustering methods beyond those dis-
cussed in this section '!. The methods we discuss were
chosen for their pedagogical value and/or their applica-
bility to problems in physics.

In section XIII.B we discuss gaussian mixture models
and the formulation of clustering through latent variable
models. This section introduces many of the methods we
will encounter when discussing other unsupervised learn-
ing methods later in the review. Finally, in section XIII.C
we discuss the problem of clustering in high-dimensional
data and possible ways to tackle this difficult problem.
The reader is also urged to experiment with various clus-
tering methods using Notebook 15.

A. Practical clustering methods

Throughout this section we focus on the Euclidean dis-
tance as a similarity measure. Other measures may be
better suited for specific problems. We refer the enthusi-
ast reader to ( , ) for a more in-
depth discussion of the different possible similarity mea-
sures.

1. K-means

We begin our discussion with K-means clustering since
this method is simple to implement and understand, and
covers the core concepts of clustering. Consider a set of
N unlabelled observations {xn}iz]:1 where x,, € R? and
where p is the number of features. Also consider a set
of K cluster centers called the cluster means: {uk}szl,
with pr € RP. The cluster means can be thought of as
the representatives of each cluster, to which data points
are assigned (see FIG. 55). K-means clustering can be
formulated as follow: given a fixed integer K, find the

1 Our complementary Python notebook introduces some of these
other methods.
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cluster means {u} and the data point assignments in or-
der to minimize the following objective function:

T, = 30D rakxn = i),

k=1n=1

(135)

where 71,5 is a binary variable (r,; € {0,1}) called the
assignment. The assignment r,; is 1 if x,, is assigned to
cluster k£ and 0 otherwise. Notice that ), rpp =1V n
and ) rnr = Ni, where Nj the number of points as-
signed to cluster k. The minimization of this objective
function can be understood as trying to find the best
cluster means such that the variance within each cluster
is minimized. In physical terms, J is equivalent to the
sum of the moments of inertia of every cluster. Indeed,
as we will see below, the cluster means p correspond to
the centers of mass of their respective cluster.

K-means algorithm K-means algorithm alternates be-
tween two steps:

1. Expectation: Given a set of assignments {r,i},
minimize J with respect to pi. Taking a simple
derivative and setting it to zero yields the follow-
ing update rule:

1
ur = N zn: TrkXn- (136)

2. Mazimization: Given a set of cluster means {py},
find the assignments {r,;} which minimizes J.
Clearly, this is achieved by assigning each data
point to their nearest cluster-mean:

if k = argmin,, (x, — ppr)?

1
k= 137
Ik {0 otherwise (137)

K-means clustering consist in alternating between these
two steps until some convergence criterion is met. Practi-
cally, the algorithm should terminate when the change in
the objective function from one iteration to another be-
comes smaller than a pre-specified threshold. A simple
example of K-means is presented in FIG. 55.

A nice property of the K-means algorithm is that it is
guaranteed to converge. To see this, one can verify explic-
itly (by taking second-order derivatives) that the expec-
tation step always decreases J. This is also true for the
assignment step. Thus, since J is bounded from below,
the two-step iteration of K-means always converges to a
local minimum of J. Since J is generally a non-convex
function, in practice one usually needs to run the algo-
rithm with different initial random seeds and post-select
the best local minimum. A simple implementation of K-
means has an average computational complexity which


https://physics.bu.edu/~pankajm/MLnotebooks.html
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FIG. 55 K-means with K = 3 applied to an artificial two-
dimensional dataset. The cluster means at each iteration are
indicated by blue star markers. t indicates the iteration num-
ber and J the value of the objective function. (a) The algo-
rithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)-(c) For well sep-
arated clusters, the algorithm converges rapidly to the true
clusters. (d) The objective function as a function of the it-
eration. J converges after ¢ = 18 iterations for this choice of
random seed.

scales linearly in the size of the data set (more specifi-
cally the complexity is O(K N) per iteration) and is thus
scalable to very large datasets.

As we will see in section XIII.B, K-means is a hard-
assignment limit of the Gaussian mixture model where
all cluster variances are assumed to be the same. This
highlights a common drawback of K-means: if the true
clusters have very different variances (spreads), K-means
can lead to spurious results since the underlying assump-
tion is that the latent model has uniform variances.

2. Hierarchical clustering: Agglomerative methods

Agglomerative clustering is a bottom up approach that
starts from small initial clusters which are then progres-
sively merged to form larger clusters. The merging pro-
cess generates a hierarchy of clusters that can be visu-
alized in the form of a dendrogram (see FIG. 56). This
hierarchy can be useful to analyze the relation between
clusters and the subcomponents of individual clusters.
Agglomerative methods are usually specified by defin-
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ing a distance measure between clusters '2. We denote
the distance between clusters X and Y by d(X,Y) € R.
Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the
closest with respect to the distance measure are merged
until a single cluster is left.

Agglometative clustering algorithm Agglomerative
clustering algorithms can thus be summarized as follow:

1. Initialize each point to its own cluster.

2. Given a set of K clusters X7, X5, -+, Xk, merge
clusters until one cluster is left (K = 1):

(a) Find the closest pair of clusters (X;,X;):
(4,7) = argmin; ;) d(Xir, Xjr)

(b) Merge the pair. Update: K + K —1

Here we list a few of the most popular distances used
in agglomerative methods, often called linkage methods
in the clustering literature.

1. Single-linkage: the distance between clusters ¢ and
j is defined as the minimum distance between two
elements of the different clusters

138
x7j€Xi,Xj€Xj ( )

|[xi — x;]l2-

2. Complete linkage: the distance between clusters
and j is defined as the maximum distance between
two elements of the different clusters.

d(X;, X;) = (139)

eax_ l[xi — xjll2

3. Average linkage: average distance between points
of different clusters

1
1 Xil - 1] 2

x; €Xi,%x;€X;

d(X;, X;) = (140)

l[xi — x;ll2

4. Ward’s linkage: This distance measure is analogous
to the K-means method as it seeks to minimize the
total inertia. The distance measure is the “error
squared” before and after merging which simplifies
to:

Xl X

d(X;, X;) = X UR (141)
i J

(i — pj)°.

12 Note that this measure need not be a metric.



A common drawback of hierarchical methods is that
they do not scale well: at every step, a distance ma-
trix between all clusters must be updated/computed.
Efficient implementations achieve a typical computa-
tional complexity of O(N?) ( , ), making the
method suitable for small to medium-size datasets. A
simple but major speed-up for the method is to initial-
ize the clusters with K-means using a large K (but still
a small fraction of N) and then proceed with hierarchi-
cal clustering. This has the advantage of preserving the
large-scale structure of the hierarchy while making use of
the linear scaling of K-means. In this way, hierarchical
clustering may be applied to very large datasets.
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FIG. 56 Hierarchical clustering example with single linkage.
(a) The data points are successively grouped as denoted by the
colored dotted lines. (b) Dendrogram representation of the
hierarchical decomposition. Each node of the tree represents
a cluster. One has to specify a scale cut-off for the distance
measure d(X,Y) (corresponding to an horizontal cut in the
dendrogram) in order to obtain a set of clusters.

3. Density-based (DB) clustering

Density clustering makes the intuitive assumption that
clusters are defined by regions of space with higher den-
sity of data points. Data points that constitute noise or
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that are outliers are expected to form regions of low den-
sity. Density clustering has the advantage of being able to
consider clusters of multiple shapes and sizes while identi-
fying outliers. The method is also suitable for large-scale
applications.

The core assumption of DB clustering is that a rel-
ative local density estimation of the data is possible.
In other words, it is possible to order points according
to their densities. Density estimates are usually accu-
rate for low-dimensional data but become unreliable for
high-dimensional data due to large sampling noise. Here,
for brevity, we confine our discussion to one of the most
widely used density clustering algorithms DBSCAN. We
have also had great success with another recently in-
troduced variant of DB clustering ( ,

) that is similar in spirit which the reader is urged
to consult. One of the authors has also created a Python
package which makes use of accurate density estimates
via kernel methods combined with agglomerative cluster-

ing to produce fast and accurate density clustering (see
GitHub).

DBSCAN algorithm Here we describe the most promi-
nent DB clustering algorithm: DBSCAN, or density-
based spatial clustering of applications with noise (
, ). Again, consider a set of N data points
X = {xn}f]\;l.
We start by defining the e-neighborhood of point x,
as follows:

Ne(xp) = {x € X|d(x,x,) < ¢&}. (142)
N.(x,) are the data points that are at a distance smaller
than € from x,,. As before, we consider d(-,-) to be the
Euclidean metric (which yields spherical neighborhoods,
see Figure 57) but other metrics may be better suited
depending on the specific data. N.(x,) can be seen as a
crude estimate of local density. x, is considered to be a
core-point if at least minPts are in its e-neighborhood.
minPts is a free parameter of the algorithm that sets
the scale of the size of the smallest cluster one should
expect. Finally, a point x; is said to be density-reachable
if it is in the e-neighborhood of a core-point. From these
definitions, the algorithm can be simply formulated (see
also Figure 57):

— Until all points in X have been visited; do

— Pick a point x; that has not been visited
— Mark x; has a visited point
— If x; is a core point; then

- Find the set C of all points that are density
reachable from x;.

- C now forms a cluster. Mark all points
within that cluster as being visited.


https://github.com/alexandreday/fast_density_clustering

— Return the cluster assignments Cy,--- ,Ck, with k
the number of clusters. Points that have not been
assigned to a cluster are considered noise or out-
liers.

Note that DBSCAN does not require the user to specify
the number of clusters but only € and minPts. While, it
is common to heuristically fix these parameters, methods
such as cross-validation can be used for their determi-
nation. Finally, we note that DBSCAN is very efficient
since efficient implementations have a computational cost
of O(Nlog N).

minPts—4

Relative density

- Low

FIG. 57 (a) Illustration of DBSCAN algorithm with
minPts= 4. Two e-neighborhood are represented as dashed
circles of radius €. Red points are the core points and
blue points are density-reachable point that are not core
points. Outliers are gray colored. (b) Application of DB-
SCAN (minPts=40) to a noisy dataset with two non-convex
clusters. Density profile is shown for clarity. Outliers are
indicated by black crosses.
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B. Clustering and Latent Variables via the Gaussian Mixture
Models

In the previous section, we introduced several practical
methods for clustering. In this section, we will approach
clustering from a more abstract vantage point, and in
the process, introduce many of the core ideas underlying
unsupervised learning. A central concept in many un-
supervised learning techniques is the idea of a latent or
hidden variable. Even though latent variables are not di-
rectly observable, they still influence the visible structure
of the data. For example, in the context of clustering we
can think of the cluster identity of each datapoint (i.e.
which cluster does a datapoint belongs to) as a latent
variable. And even though we cannot see the cluster la-
bel explicitly, we know that points in the same cluster
tend to be closer together. The latent variables in our
data (cluster identity) are a way of representing and ab-
stracting the correlations between datapoint.

In this language, we can think of clustering as an algo-
rithm to learn the most probable value of a latent variable
(cluster identity) associated with each datapoint. Cal-
culating this latent variable requires additional assump-
tions about the structure of our dataset. Like all unsu-
pervised learning algorithms, in clustering we must make
an assumption about the underlying probability distribu-
tion from which the data was generated. Our model for
how the data is generated is often called our generative
model. In clustering, we assume that data points are as-
signed a cluster, with each cluster characterized by some
cluster-specific probability distribution (e.g. a Gaussian
with some mean and variance that characterizes the clus-
ter). We then specify a procedure for finding the value
of the latent variable. This is often done by choosing the
values of the latent variable that minimizing some cost
function.

One common choice for a class of cost functions for
many unsupervised learning problems is Maximum Like-
lihood Estimation (MLE), see Secs. V and VI. In MLE,
we choose the values of the latent variables that maximize
the likelihood of the observed data under our generative
model (i.e. maximize the probability of getting the ob-
served dataset under our generative model). Such MLE
equations often give rise to the kind of Expectation Maxi-
mization (EM) equations that we first encountered in the
last section in the context of K-means clustering.

Gaussian Mixtures models (GMM) are a generative
model often used in the context of clustering. In GMM,
points are drawn from one of K Gaussians, each with its
own mean g and covariance matrix Yy,

N(@|p, E) ~ exp(—(z — )=~ (@ —p)"/2).  (143)

Let us denote the probability that a point is drawn from
mixture k£ by 7. Then, the probability of generating a



point « in a GMM is given by

K
= N(@|py, Sp)m,

k=1

p(e{pr, Xk, 71 }) (144)

Given a dataset X = {xq,---
likelihood of the dataset as

, &N}, we can write the

N

= Hp(:l:i|{llk72ka7rk})

i=1

(X {1k, B, T }) (145)

For future reference, let us denote the set of parameters
{pr, Xk, 7} by 0

To see how we can use GMM and MLE to perform
clustering, we introduce discrete binary K-dimensional
latent variables z for each data point @ whose k-th com-
ponent is 1 if point « was generated from the k-th Gaus-
sian and zero otherwise (these are often called “one-hot
variables”). For instance if we were considering a Gaus-
sian mixture with K = 3, we would have three possible
values for z = (21, 22, 23) : (1,0,0),(0,1,0) and (0,0,1).
We cannot directly observe the variable z. It is a latent
variable that encodes the cluster identity of point @. Let
us also denote all the IV latent variables corresponding
to a dataset X by Z.

Viewing the GMM as a generative model, we can write
the probability p(x|z) of observing a data point & given
z as

p(|z; (e, Bi}) = [T N (@lhn, S0) (146)
k=1

as well as the probability of observing a given value of
latent variable

z|{m}) = H Ly
Using Bayes rule, we can write the joint probability of
a clustering assignment z and a data point x given the
GMM parameters as

p(|z; {pe, B })p(z[{7r})-

We can also use Bayes rule to rearrange this expression
to give the conditional probability of the data point x
being in the k-th cluster, v(zx), given model parameters
0 as

(147)

p(x, 2;0) = (148)

N (@ pik, X))

= p(zi = 1]a;0) = :
iy N (g, 55)

v(2k) (149)

N K
Epo logp(X,2;0)] = > > 4 llog N (s ., Bi) + log ]

i=1 k=1
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The ~y(zx) are often referred to as the “responsibility”
that mixture k& takes for explaining x. Just like in our
discussion of soft-max classifiers, this can be made into
a “hard-assignment” by assigning each point to the clus-
ter with the largest probability: argmaxy v(zx) over the
responsibilities.

The complication is of course that we do not know that
the parameters 6 of the underlying GMM but instead
must also learn them from the dataset X. As discussed
above, ideally we could do this by choosing the param-
eters that maximize the likelihood (or equivalently the
log-likelihood) of the data

f; = arg max log p(X|6) (150)
0;

where 0; € {py, Xk, 7 }. Once we knew the MLEs 0;, we
could use Eq. (149) to calculate the optimal hard cluster
assignment arg maxy, §(zx) where §(z;) = p(zr, = 1]x; 0).

In practice, due to the complexity of Eq. (145), it is
almost impossible to find the global maximum of the like-
lihood function. Instead, we must settle for a local max-
imum. One approach to finding a local maximum of the
likelihood is to use a method like stochastic gradient de-
scent on the negative log-likelihood, cf. Sec IV. Here, we
introduce an alternative, powerful approach for finding
local minima in latent variable models using an iterative
procedure called Expectation Maximization (EM). Given
an initial guess for the parameters (), the EM algorithm
iteratively generated new estimates for the parameters
6 92 .. Importantly, the likelihood is guaranteed to
be non-decreasing under these iterations and hence EM
converges to a local maximum of the likelihood (

9 )'

The central observation underlying EM is that it is
often much easier to calculate the conditional likelihoods
of the latent variables p(*)(Z) = p(Z|X;0®)) given some
choice of parameters and the maximum of the expected
log likelihood given an assignment of the latent variables:
O+ = arg max, E,zix;00)llogp(X,Z;0)]. To get an
intuition for this later quantity notice that we can write

(151)



where have used the shorthand 'yi(t) = p(zix|X; 01 with
zir. the k-th component of z;. Taking the derivative of
this equation with respect to pg, 3g, and 5 (subject to
the constraint ), 7, = 1) and setting this to zero yields

the intuitive equations

N t
L) _ Z0 T
koo 0)
> Vik
N
@y N A (@ — ) (xi —
e = (®)
> Vik
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20 Z L

k N ik
k

(152)

These are just the usual estimates for the mean and vari-
ance, with each data point weighed according to our cur-
rent best guess for the probability that it belongs to clus-
ter k. We can then use our new estimate 0(‘*1) to cal-
culate new memberships 'yi(,iﬂ) and repeat the process.
This is essentially the K-Means algorithm discussed in
the first section.

This discussion of the Gaussian mixture model intro-
duces several concepts that we will return to repeatedly
in the context of unsupervised learning. First, it is often
useful to think of the visible correlations between features
in the data as resulting from hidden or latent variables.
Second, we will often posit a generative model that en-
codes the structure we think exists in the data and then
find parameters that maximize the likelihood of the ob-
served data. Third, often we will not be able to directly
estimate the MLE, and will have to instead look for a
computationally efficient way to find a local minimum of
the likelihood.

C. Clustering in high-dimension

Clustering data in high-dimension can be very chal-
lenging. One major problem that is aggravated in high-
dimensions is the accumulation of noise coming from spu-
rious features that tends to “blur” distances (Domingos,
2012; Kriegel et al., 2009; Zimek et al., 2012). Many
clustering algorithms rely on the explicit use of a simi-
larity measure or distance metrics that weigh all features
equally. For this reason, one must be careful when us-
ing an off-the-shelf method in high dimensions. In order
to perform clustering on high-dimensional data, it is of-
ten useful to denoise the data before proceeding with
using a standard clustering method such as K-means
(Kriegel et al., 2009). Figure 54 illustrates an applica-
tion of denoising to high-dimensional data. PCA (sec-
tion XII.B) was used to denoise the MNIST dataset by
projecting the 784 original dimensions onto the 40 di-
mensions with the largest principal components. The re-
sulting features were then used to construct a Euclidean
distance matrix which was used by ¢-SNE to compute
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FIG. 58 (a) Application of gaussian mixture modelling to
the Ising dataset. The normalized histogram corresponds to
the first principal component distribution of the dataset (or
equivalently the magnetization in this case). The 1D data
is fitted with a K = 3-component gaussian mixture. The
likehood of the fitted gaussian mixture is represented in red
and is obtained via the expectation-maximization algorithm
(b) The gaussian mixture model can be used to compute
posterior probability (responsibilities), i.e. the probability
of being in one of the phases. Note that the point where
v(1) = «v(2) = v(3) can be interpreted as the critical point.
Indeed the crossing occurs at T' ~ 2.26.

the two-dimensional embedding that is presented. Using
t-SNE directly on original data leads to a “blurring” of
the clusters (the reader is encouraged to test this them-
seleves).

However, simple feature selection or feature denoising
(using PCA for instance) can sometimes be insufficient
for learning clusters due to the presence of large vari-
ations in the signal and noise of the features that are
relevant for identifying the underlying clusters (IKriegel
et al., 2009). Recent promising work suggests one way
to overcome these limitations is to learn the latent space
and the cluster labels at the same time (Xic et al., 2016).

Finally we end the clustering section with a short dis-
cussion on clustering validation, which can be particu-



larly difficult for high-dimensional data. Often clustering
validation, i.e. verifying wether the obtained labels are
“valid” is done by direct visual inspection. That is, the
data is represented in a low-dimensional space and the
cluster labels obtained are visually inspected to make
sure that different labels organize into distinct “blobs”.
For high-dimensional data, this is done by performing
dimensional reduction (section XII). However, this can
lead to the appearance of spurious clusters since dimen-
sional reduction inevitably loses information about the
original data. Thus, these methods should be used with
care when trying to validate clusters (see (

, ) for an interactive discussion on how t-SNE
can sometime be misleading and how to effectively use
it).

A lot of work has been done to devise ways of validating
clusters based on various metrics and measures(

, ). Perhaps one the most intuitive way of defin-
ing a good clustering is by measuring how well clusters
generalize. Recently, clustering methods based on lever-
aging powerful classifiers to measure the generalization
errors of the clusters have been developed by some of
the authors ( , ) and we believe this
represent an especially promising research direction for
high-dimensional clustering. Finally, we emphasize that
this discussion is far from exhaustive and we refer the
reader to ( , ), Chapter 15, for
an in-depth survey of the various validation techniques.

XIV. VARIATIONAL METHODS AND MEAN-FIELD
THEORY (MFT)

A common thread in many unsupervised learning tasks
is accurately representing the underlying probability dis-
tribution from which a dataset is drawn. Unsuper-
vised learning of high-dimensional, complex distributions
presents a new set of technical and computational chal-
lenges that are different from those we encountered in
a supervised learning setting. When dealing with com-
plicated probability distributions, it is often much easier
to learn the relative weights of different states or data
points (ratio of probabilities), than absolute probabili-
ties. In physics, this is the familiar statement that the
weights of a Boltzmann distribution are much easier to
calculate than the partition function. The relative prob-
ability of two configurations, @, and @5, are proportional
to the difference between their Boltzmann weights

]

(X1) _ —B(B(xi)~E(x2)
(x2

; (153)

s

where as is usual in statistical mechanics [ is the inverse
temperature and E(x;6) is the energy of state x given
some parameters (couplings) 6 . However, calculating the
absolute weight of a configuration requires knowledge of
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the partition function

Z, = Trye PEG) (154)
(where the trace is taken over all possible configurations
x) since

e_ﬁE(xl)

Z (155)

p(x) =
In general, calculating the partition function Z, is ana-
lytically and computationally intractable.

For example, for the Ising model with N binary spins,
the trace involves calculating a sum over 2V terms, which
is a difficult task for most energy functions. For this rea-
son, physicists (and machine learning scientists) have de-
veloped various numerical and computational methods
for evaluating such partition functions. One approach
is to use Monte-Carlo based methods to draw samples
from the underlying distribution (this can be done know-
ing only the relative probabilities) and then use these
samples to numerically estimate the partition function.
This is the philosophy behind powerful methods such as
Markov Chain Monte Carlo (MCMC) ( ,

) and annealed importance sampling (

, ) which are widely used in both the statistical
physics and machine learning communities. An alterna-
tive approach — which we focus on here — is to approxi-
mate the the probability distribution p(x) and partition
function using a “variational distribution” ¢(x;6,) whose
partition function we can calculate exactly. The varia-
tional parameters 6, are chosen to make the variational
distribution as close to the true distribution as possible
(how this is done is the focus of much of this section).

One of the most-widely applied examples of a varia-
tional method in statistical physics is Mean-Field Theory
(MFT). MFT can be naturally understood as a procedure
for approximating the true distribution of the system by
a factorized distribution. The deep connection between
MFT and variational methods is discussed below. These
variational MFT methods have been extended to under-
stand more complicated spin models (also called graph-
ical models in the ML literature) and form the basis of
powerful set of techniques that go under the name of Be-
lief Propagation and Survey Propagation ( , ;

Variational methods are also widely used in ML to ap-
proximate complex probabilistic models. For example,
below we show how the Expectation Maximization (EM)
procedure, which we discussed in the context of Gaus-
sian Mixture Models for clustering, is actually a general
method that can be derived for any latent (hidden) vari-
able model using a variational procedure (

, ). This section serves as an introduction to this
powerful class of variational techniques. For readers in-
terested in an in-depth discussion on variational infer-
ence for probabilistic graphical models, we recommend



the great treatise written by Michael I. Jordan and oth-

ers( , ), the more physics oriented dis-
cussion in ( , ; , ), as well as
David MacKay’s outstanding book ( , ).

A. Variational mean-field theory for the Ising model

Ising models are a major paradigm in statistical
physics. Historically introduced to study magnetism, it
was quickly realized that their predictive power applies
to a variety of interacting many-particle systems. Ising
models are now understood to serve as minimal models
for complex phenomena such as certain classes of phase
transitions. In the Ising model, degrees of freedom called
spins assume discrete, binary values, e.g. s; = +1. Each
spin variable s; lives on a lattice (or, in general, a graph),
the sites of which are labeled by ¢« = 1,2...,N. De-
spite the extreme simplicity relative to real-world sys-
tems, Ising models exhibit a high level of intrinsic com-
plexity, and the degrees of freedom can become correlated
in sophisticated ways. Often, spins interact spatially lo-
cally, and respond to externally applied magnetic fields.

A spin configuration s specifies the values s; of the
spins at every lattice site. We can assign an “energy” to
every such configuration

E(s,J) = 7% Zjijsisj - Zhi5i7
7 i

where h; is a local magnetic field acting on the spin s;,
and J;; is the interaction strength between the spins s;
and s;. In textbook examples, the coupling parameters
J = (J,h) are typically uniform or, in studies of disor-
dered systems, drawn from some probability distribution
(i.e. quenched disorder).

The probability of finding the system in a given spin
configuration at temperature 5! is given by

(156)

1
p(s|J = PEBT)
C = 7,0
Zy() = Y o), (157)
{SL:il}

with Z{Si:il} denoting the sum over all possible config-
urations of the spin variables. We write Z, to emphasize
that this is the partition function corresponding to the
probability distribution p(s), which will become impor-
tant later. For a fixed number of lattice sites IV, there
are 2V possible configurations, a number that grows ex-
ponentially with the system size. Therefore, it is not in
general feasible to evaluate the partition function Z,(J)
in closed form. This represents a major practical obstacle
for extracting predictions from physical theories since the
partition function is directly related to the free-energy
through the expression

BE,(J) = —log Z,(J) = B{E(s,J))p, — Hp, (158)
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with

H,=— Y p(s|J)logp(s|J)
{S,;::l:l}

(159)

the entropy of the probability distribution p(s|J).

Even though the true probability distribution p(s|s3, J)
may be a very complicated object, we can still make
progress by approximating p(s|8, J) by a variational dis-
tribution q(s, @) which captures the essential features of
interest, with # some parameters that define our varia-
tional ansatz. The name variational distribution comes
from the fact that we are going to vary the parame-
ters 0 to make ¢(s,0) as close to p(s|s3,J) as possible.
The functional form of ¢(s, @) is based on an “educated
guess”, which oftentimes comes from our intuition about
the problem. We can also define a variational free-energy

BE(6,J) = B(E(s, J))q — Hy, (160)

where (E(s,J))q is the expectation value of the energy
corresponding to the distribution p(s) with respect to the
distribution ¢(s, 0), and H, is the entropy of ¢(s, ).
Before proceeding further, it is helpful to introduce
a new quantity: the Kullback-Leibler divergence (KL-
divergence or relative entropy) between two distributions
p(x) and ¢(x). The KL-divergence measures the dissim-
ilarity between the two distributions and is given by

q(x)

DKL(QHP) Trxq(x) 10g p(X)’ (161)
which is the expectation w.r.t. ¢ of the logarithmic dif-
ference between the two distributions p and ¢q. Two
important properties of the KL-divergence are (i) pos-
itivity: Dgr(pll¢) > 0 with equality if and only if
p = ¢ (in the sense of probability distributions), and (ii)
Dk (pllg) # Dk r(q||p), that is the KL-divergence is not
symmetric in its arguments.

Variational mean-field theory is a systematic way for
constructing such an approximate distribution ¢(s,8).
The main idea is to choose parameters that minimize the
difference between the variational free-energy F,(J,0)
and the true free-energy F,(J|3). We will show in Sec-
tion XIV.B below that the difference between these two
free-energies is actually the KL-divergence:

Fy(J,8) = Fy(J,8) + Drr(qllp)-

This equality, when combined with the non-negativity of
the KL-divergence has important consequences. First, it
shows the variational free-energy is always larger than
the true free-energy, Fy(J,0) > F,(J), with equality if
and only if ¢ = p (the latter inequality is found in many
physics textbooks and is known as the Gibbs inequal-
ity). Second, finding the best variational free-energy is
equivalent to minimizing the KL divergence D, (q||p).
Armed with these observations, let us now derive a
MFT of the Ising model using variational methods. In

(162)



the simplest MFT of the Ising model, the variational dis-
tribution is chosen so that all spins are independent:

eéi Si

1
q(s,0) = ZGXP <§1: 9i3i> = H Jcoshf;

i

(163)

In other words, we have chosen a distribution ¢ which
factorizes on every lattice site. An important property
of this functional form is that we can analytically find a
closed-form expression for the variational partition func-
tion Z;. This simplicity also comes at a cost: ignor-
ing correlations between spins. These correlations be-
come less and less important in higher dimensions and
the MFT ansatz becomes more accurate.

To evaluate the variational free-energy, we make use
of Eq. (160). First, we need the entropy H, of the dis-
tribution ¢. Since g factorizes over the lattice sites, the
entropy separates into a sum of one-body terms

Hy(0)=— > q(s,0)logq(s,0)
{si==£1}

=Y ailoggi + (1 - g;) log(1 - ¢;), (164)

where ¢; = % is the probability that spin s; is in the
+1 state. Next, we need to evaluate the average of the
Ising energy E(s,J) with respect to the variational dis-
tribution q. Although the energy contains bilinear terms,
we can still evaluate this average easily, because the spins
are independent (uncorrelated) in the ¢ distribution. The
mean value of spin s; in the ¢ distribution, or the on-site
magnetization, is given by

0isi

S;= 1

(165)

Since the spins are independent, we have
1
<E(S7J)>q = —§ZJijmimj —thml (166)
i, i

The total variational free-energy is
BFq(J70) = ﬂ<E(8’ J)>q - an

and minimizing with respect to the variational parame-
ters 6@, we obtain

(167)
Setting this equation to zero, we arrive at
(168)

92‘ = BZ Jijmj(Qj) + hi.
J

For the special case of a uniform field h; = h and uniform
nearest neighbor couplings J;; = J, by symmetry the

7

variational parameters for all the spins are identical, with
0; = 0 for all i. Then, the mean-field equations reduce
to their familiar textbook form, m = tanh(f) and 6 =
B(zJm(0) + h), where z is the coordination number of
the lattice (i.e. the number of nearest neighbors).

Equations (165) and (168) form a closed system, known
as the mean-field equations for the Ising model. To find
a solution to these equations, one method is to iterate
through and update each 6;, once at a time, in an asyn-
chronous fashion. To see the relationship of this approach
to solving the MFT equations to Expectation Maximiza-
tion (EM), it is helpful to explicitly spell out the iterative
procedure to find the solutions to Eq. (168). We start by
initializing our variational parameters to some 8(®) and
repeat the following until convergence:

1. Expectation: Given a set of assignments at iteration
t, @) calculate the corresponding magnetizations
m) using Eq. (165)

2. Mazximization: Given a set of magnetizations my,
find new assignments 6t which minimize the
variational free energy Fj,. From, Eq. (168) this
is just

t4+1 t
oY = 83" gy + b, (169)
J

From these equations, it is clear that we can think of the
MFT of the Ising model as an EM-like procedure similar
to the one we used for k-means clustering and Gaussian
Mixture Models in Sec. XIII.

As if well known in statistical physics, even though
MFT is not exact, it can often yield qualitatively and
even quantitatively precise predictions (especially in high
dimensions). The discrepancy between the true physics
and MFT predictions stems from the fact that the varia-
tional distribution ¢ we chose does not model the correla-
tions between spins. For instance, it predicts the wrong
value for the critical temperature for the 2D Ising model.
It even erroneously predicts the existence of a phase tran-
sition in one dimension at a non-zero temperature. We
refer the interested reader to standard textbooks on sta-
tistical physics for a detailed analysis of applicability of
MFT to the Ising model. However, we emphasize that
the failure of any particular variational ansatz does not
compromise the power of the approach. In some cases,
one can consider changing the variational ansatz to im-
prove the predictive properties of the corresponding vari-
ational MFT ( , ; , ). The
take-home message is that variational MFT is a powerful
tool but one that must be applied and interpreted with
care.



B. Expectation Maximization (EM)

Ideas along the lines of variational MFT have been
independently developed in statistics and imported into
machine learning to perform maximum likelihood (ML)
estimates. In this section, we explicitly derive the Expec-
tation Maximization (EM) algorithm and demonstrate
further its close relation to variational MFT (

, ). We will focus on latent variable mod-
els where some of the variables are hidden and cannot
be directly observed. This often makes maximum likeli-
hood estimation difficult to implement. EM gets around
this difficulty by using an iterative two-step procedure,
closely related to variational free-energy based approxi-
mation schemes in statistical physics.

To set the stage for the following discussion, let & be
the set of visible variables we can directly observe and z
be the set of latent or hidden variables that we cannot di-
rectly observe. Denote the underlying probability distri-
bution from which & and z are drawn by p(z, |@), with
0 representing all relevant parameters. Given a dataset
x, we wish to find the maximum likelihood estimate of
the parameters @ that maximizes the probability of the
observed data.

As in variational MFT, we view 6 as variational pa-
rameters chosen to maximize the log-likelihood L(0) =
log p(x|@). Algorithmically, this can be done by iterat-
ing the variational parameters 8*) in a series of steps

(t =1,2,...) starting from some arbitrary initial value
IO

1. Expectation step (E step): Given the known
values of observed variable  and the current esti-
mate of parameter 6;_1, find the probability distri-
bution of the latent variable z:

g-1(2) = p(z|0" Y, x) (170)

2. Maximization step (M step): Re-estimate the
parameter 8*) to be those with maximum likeli-
hood, assuming ¢;—1(z) found in the previous step
is the true distribution of hidden variable z:

6, = argmax(log p(z, z(0))q, , (171)
]

It was shown ( , ) that each EM iter-
ation increases the true log-likelihood L(8), or at worst
leaves it unchanged. In most models, this iteration pro-
cedure converges to a local mazimum of L(0).

To see how EM is actually performed and related
to variational MFT, we make use of KL-divergence be-
tween two distributions introduced in the last section.
Recall that our goal is to maximize the log-likelihood
L(0) = log p(x]0). With data z missing, we surely can-
not just maximize L(0) directly since parameter 8 might
couple both z and . EM circumvents this by optimiz-
ing another objective function, F,(0), constructed based
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*Fq(a(t))

FIG. 59 Convergence of EM algorithm. Starting from 6., E-
step (blue) establishes F,(8®)) which is always a lower bound
of F, := logp(x|0) (green). M-step (red) is then applied
to update the parameter, yielding 01+t The updated pa-
rameter 871 is then used to construct F,(0“*1) in the
subsequent E-step. M-step is performed again to update the
parameter, etc.

on estimates of the hidden variable distribution ¢(z|x).
Indeed, the function optimized is none other than the
variational free energy we encountered in the previous
section:

Fq(0) := —(log p(z, %|0)), — Hy, (172)

where H, is the Shannon entropy (defined in Eq. (159))
of g(z). Once can define the true free-energy F,(0) as
the negative log-likelihood of the observed data:

— F,(6) = L() = log p(x16). (173)

In the language of statistical physics, F,(0) is the true
free-energy while F,(0) is the variational free-energy we
would like to minimize (see Table I). Note that we have
chosen to employ a physics sign convention here of defin-
ing the free-energy as minus log of the partition function.
In the ML literature, this minus sign is often omitted
( ) ) and this can lead to some con-
fusion. Our goal is to choose @ so that our variational
free-energy F,(0) is as close to the true free-energy F,(0)
as possible. The difference between these free-energies



can be written as
Fy(6) — F,(0)
= logp(x|0) — Y _ q(z|z) log p(z, )

+ Y dlzlz) logg(z]a)
=3 q(zle) log p(@l8) — 3 (2| log p(z, ]6)

z

+Zq(zlw) log q(z|x)
:qu z|x) log
( z)

—Z (z|x) log Zz.0)
= DKL( (Z\iﬂ)llp(zlw,@)) >0

p(z,x|0)

o(zl0) +Zq z|z) log j(z)

where we have used Bayes’ theorem p(z|xz,0) =
p(z,x|0)/p(x]0). Since the KL-divergence is always pos-
itive, this shows that the variational free-energy Fj is
always an upper bound of the true free-energy F,. In
physics, this result is known as Gibbs’ inequality.

From Eq. (172) and the fact that the the entropy term
in Eq. (172) does not depend on 6, we can immediately
see that the maximization step (M-step) in Eq. (171)
is equivalent to minimizing the variational free-energy
F,(0). Surprisingly, the expectation step (E-step) can
also viewed as the optimization of this variational free-
energy. Concretely, one can show that the distribution
of hidden variables z given the observed variable & and
the current estimate of parameter 8, Eq. (170), is the
unique probability ¢(z) that minimizes F;;(0) (now seen
as a functional of ¢). This can be proved by taking the
functional derivative of Eq. (172), plus a Lagrange mul-
tiplier that encodes ) q(2) = 1, with respect to ¢(z).
Summing things up, we can re-write EM in the following
form ( , ):

1. Expectation step: Construct the approximating
probability distribution of unobserved z given the
values of observed variable  and parameter esti-
mate 0(—1):

¢-1(2) = arg min Fq(o(tfl))
q

(174)

2. Maximization step: Fix g, update the variational
parameters:

0 = argmax —F,,_,(0). (175)
]

To recapitulate, EM implements ML estimation even
with missing or hidden variables through optimizing a
lower bound of the true log-likelihood. In statistical
physics, this is reminiscent of optimizing a variational
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free-energy which is a lower bound of true free-energy
due to Gibbs inequality. In Fig. 59, we show pictorially
how EM works. The E-step can be seen as representing
the unobserved variable z by a probability distribution
g(z). This probability is used to construct an alterna-
tive objective function —F (), which is then maximized
with respect to 8 in the M-step. By construction, maxi-
mizing the negative variational free-energy is equivalent
to doing ML estimation on the joint data (i.e. both ob-
served and unobserved). The name “M-step” is intuitive
since the parameters @ are found by maximizing —F(6).
The name “E-step” comes from the fact that one usually
doesn’t need to construct the probability of missing datas
explicitly, but rather need only compute the “expected"
sufficient statistics over these data, cf. Fig. 59.

On the practical side, EM has been demonstrated to
be extremely useful in parameter estimation, particularly
in hidden Markov models and Bayesian networks (see,
for example, ( ).
One of the striking advantageb of EM is that 1t is con-
ceptually simple and easy to implement (see Notebook
16). In many cases, implementation of EM is guaranteed
to increase the likelihood monotonically, which could be
a perk during debugging. For readers interested in an
overview on applications of EM, we recommend (

) )'

Finally for advanced readers familiar with the physics
of disordered systems, we note that it is possible to
construct a one-to-one dictionary between EM for la-
tent variable models and the MFT of spin systems with
quenched disorder. In a disordered spin systems, the
Ising couplings J are commonly taken to be quenched
random variables drawn from some underlying probabil-
ity distribution. In the EM procedure, the quenched dis-
order is provided by the observed data points & which
are drawn from some underlying probability distribution
that characterizes the data. The spins s are like the hid-
den or latent variables z. Similar analogues can be found
for all the variational MFT quantities (see Table I). This
striking correspondence offers a glimpse into the deep
connection between statistical mechanics and unsuper-
vised latent variable models — a connection that we will
repeatedly exploit to gain more intuition for the energy-
based unsupervised models considered in the next few
chapters.

XV. ENERGY BASED MODELS: MAXIMUM ENTROPY
(MAXENT) PRINCIPLE, GENERATIVE MODELS, AND
BOLTZMANN LEARNING

Most of the models discussed in the previous sections
(e.g. linear and logistic regression, ensemble models, and
supervised neural networks) are discriminative — they
are designed to perceive differences between groups or
categories of data. For example, recognizing differences
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statistical physics Variational EM

spins/d.o.f.: s hidden/latent variables z

couplings /quenched disorder:|data observations: &
J

—BE(s,J)

Complete probability:

p(z, 2|0)

Boltzmann factor e

partition function: Z(J) marginal likelihood p(z|6)

energy: BE(s,J) negative log-complete data

likelihood: —logp(x, 2|0, m)

free energy: SF,(J|3) negative log-marginal likeli-
hood: — log p(x|m)

variational distribution: ¢(s) |variational distribution:
q(z|z)

variational free-energy: |variational free-energy:

F,(J,0) Fy(x,0)

TABLE I Analogy between quantities in statistical physics
and variational EM.

between images of cats and images of dogs allows a dis-
criminative model to label an image as “cat” or “dog”.
Discriminative models form the core techniques of most
supervised learning methods. However, discriminative
methods have several limitations. First, like all super-
vised learning methods, they require labeled data. Sec-
ond, there are tasks that discriminative approaches sim-
ply cannot accomplish, such as drawing new examples
from an unknown probability distribution. A model that
can learn to represent and sample from a probability dis-
tribution is called generative. For example, a genera-
tive model for images would learn to draw new examples
of cats and dogs given a dataset of images of cat and
dog. Similarly, given samples generated from one phase
of an Ising model we may want to generate new sam-
ples from that phase. Such tasks are clearly beyond the
scope of discriminative models like the ensemble models
and DNNs discussed so far in the review. Instead, we
must turn to a new class of machine learning methods.

The goal of this section is to introduce the reader to
energy-based generative models. As we will see, energy-
based models are closely related to the kinds of models
commonly encountered in statistical physics. For this
reason, we will draw upon many techniques that have
their origin in statistical mechanics (e.g. Monte-Carlo
methods). The section starts with a brief overview of
generative models, highlighting the similarities and dif-
ferences with the supervised learning methods encoun-
tered in earlier sections. Next, we introduce perhaps the
simplest kind of generative model — Maximum Entropy
(MaxEnt) models. MaxEnt models have no latent (or
hidden) variables, making them ideal for introducing the
key concepts and tools that underlie energy-based gen-
erative models. We then present an extended discussion
of how to train energy-based models. Much of this dis-
cussion will be also be applicable to more complicated
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energy-based models such as Restricted Boltzmann Ma-
chines (RBMs) and the deep models discussed in the next
section.

A. An overview of energy-based generative models

Generative models are machine learning methods that
learn to generate new examples similar to those found
in a training dataset. The core idea of most generative
models is to learn a parametric model for the probabil-
ity distribution from which the data was drawn. Once
we have learned a model, we can generate new examples
by sampling from the learned generative model (see Fig-
ure 60). As in statistical physics, this sampling is often
done using Markov Chain Monte Carlo (MCMC) meth-
ods. A review of MCMC methods is beyond the scope of
this discussion: for a concise and beautiful introduction
to MCMC-inspired methods that bridges both statisti-
cal physics and ML the reader is encouraged to consult
Chapters 29-32 of David MacKay’s book ( , )
as well as the review by Michael I. Jordan and others (

The added complexity of learning models directly
from samples introduces many of the same fundamental
tensions we encountered when discussing discriminative
models. The ability to generate new examples requires
models to be able to “generalize” beyond the examples
they have been trained on, that is to generate new sam-
ples that are not samples of the training set. The models
must be expressive enough to capture the complex cor-
relations present in the underlying data distribution, but
the amount of data we have is finite which can give rise
to overfitting.

In practice, most generative models that are used in
machine learning flexible enough that, with a sufficient
number of parameters, they can approximate any prob-
ability distribution. For this reason, there are three axes
on which we can differentiate classes of generative mod-
els:

e The first axis is how easy the model is to train —
both in terms of computational time and the com-
plexity of writing code for the algorithm.

e The second axis is how well the model generalizes
from the training set to the test set.

e The third axis is which characteristics of the data
distribution the model is capable of and focuses on
capturing.

All generative models must balance these competing re-
quirements and generative models differ in the tradeoffs
they choose. Simpler models capture less structure about
the underlying distributions but are often easier to train.
More complicated models can capture this structure but
may overfit to the training data.



One of the fundamental reasons that energy-based
models have been less widely-employed than their dis-
criminative counterparts is that the training procedure
for these models differs significantly from those for su-
pervised neural networks models. Though both employ
gradient-descent based procedures for minimizing a cost
function (one common choice for generative models is
the negative log-likelihood function), energy-based mod-
els do not use backpropagation (see Sec. IX.D) and au-
tomatic differentiation for computing gradients. Rather,
one must turn to ideas inspired by MCMC based meth-
ods in physics and statistics that sometimes go under
the name “Boltzmann Learning” (discussed below). As a
result, training energy-based models requires additional
tools that are not immediately available in packages such
as PyTorch and TensorFlow.

A new open-source package — Paysage — that is built on
top of PyTorch bridges this gap by providing the toolset
for training energy-based models (Paysage is maintained
by Unlearn.AI — a company affiliated with two of the au-
thors (CKF and PM)). Paysage makes it easy to quickly
code and deploy energy-based models such as Restricted
Boltzmann Machines (RBMs) and Stacked RBMs- a
“deep” unsupervised model. The package includes un-
published training methods that significantly improve the
training performance, can be used for various datatypes,
and can be employed on GPUs. We make use of this
package extensively in the next two sections and the ac-
companying Python notebooks. For example, Figure 60
(and the accompanying notebook) show how the Paysage
package can be used to quickly code and train a variety
of energy-based models on the MNIST handwritten digit
dataset.

Finally, we note that generative models at their most
basic level are complex parameterizations of the prob-
ability distribution the data is drawn from. For this
reason, generative models can do much more than just
generate new examples. They can be used to perform
a multitude of other tasks that require sampling from a
complex probability distribution including “de-noising”,
filling in missing data, and even discrimination ( ,

). The versatility of generative models is one of the
major appeals of these unsupervised learning methods.

B. Maximum entropy models: the simplest energy-based
generative models

Maximum Entropy (MaxEnt) models are one of the
simplest classes of energy-based generative models. Max-
Ent models have their origin in a series of beautiful pa-
pers by Jaynes that reformulated statistical mechanics in
information theoretic terms ( , ,b). Recently,
the flood of new, large scale datasets has resulted in a
resurgence of interest in MaxEnt models in many fields
including physics (especially biological physics), compu-
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FIG. 60 Examples of handwritten digits (“reconstructions”)
generated using various energy-based models using the pow-
erful Paysage package for unsupervised learning. Examples
from top to bottom are: the original MNIST database, an
RBM with Gaussian units which is equivalent to a Hopfield
Model, a Restricted Boltzmann Machine (RBM), a RBM with
an L penalty for regularization, and a Deep Boltzmann Ma-
chine (DBM) with 3 layers. All models have 200 hidden units.
See Sec. XVI and corresponding notebook for details
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tational neuroscience, and ecology ( , ;

, : , ). MaxEnt
models are often presented as the class of generative mod-
els that make the least assumptions about the underlying
data. However, as we have tried to emphasize throughout
the review, all ML and statistical models require assump-
tions, and MaxFEnt models are no different. Overlooking
this can sometimes lead to misleading conclusions, and
it is important to be cognizant of these implicit assump-
tions ( , ; , ).

1. MaxEnt models in statistical mechanics

MaxEnt models were introduced by E. T. Jaynes in a
two-part paper in 1957 entitled “Information theory and
statistical mechanics” ( , ,b). In these incred-
ible papers, Jaynes showed that it was possible to re-
derive the Boltzmann distribution (and the idea of gen-
eralized ensembles) entirely from information theoretic
arguments. Quoting from the abstract, Jaynes consid-
ered “statistical mechanics as a form of statistical infer-
ence rather than as a physical theory” (portending the
close connection between statistical physics and machine
learning). Jaynes showed that the Boltzmann distribu-
tion could be viewed as resulting from a statistical in-
ference procedure for learning probability distributions
describing physical systems where one only has partial
information about the system (usually the average en-
ergy).

The key quantity in MaxEnt models is the informa-
tion theoretic, or Shannon, entropy, a concept introduced
by Shannon in his landmark treatise on information the-
ory ( , ). The Shannon entropy quantifies
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the statistical uncertainty one has about the value of a
random variable x drawn from a probability distribution
p(x). The Shannon entropy of the distribution is defined
as

Sp = —Tryep(x) log p(x) (176)
where the trace is a sum/integral over all possible values
a variable can take. Jaynes showed that the Boltzmann
distribution follows from the Principle of Maximum En-
tropy. A physical system should be described by the
probability distribution with the largest entropy subject
to certain constraints (often provided by measuring the
average value of conserved, extensive quantities such as
the energy, particle number, etc.) The principle uniquely
specifies a procedure for parameterizing the functional
form of the probability distribution. Once we have spec-
ified and learned this form we can, of course, generate
new examples by sampling this distribution.

Let us illustrate how this works in more detail. Sup-
pose that we have chosen a set of functions { f;(x)} whose
average value we want to fix to some observed values
(fi)obs- The Principle of Maximum Entropy states that
we should choose the distribution p(x) with the largest
uncertainty (i.e. largest Shannon entropy S,), subject to
the constraints that the model averages match the ob-
served averages:

<.fz'>mode1 = /dei(X)p(X) = <fi>0bs (177)

We can formulate the Principle of Maximum Entropy
as an optimization problem using the method of Lagrange
multipliers by minimizing:

£l = =5+ 30 (o — [ a0 )

+7 (1 - /dxp(X)> :

where the first set of constraints enforce the requirement
for the averages and the last constraint enforces the nor-
malization that the trace over the probability distribu-
tion equals one. We can solve for p(x) by taking the
functional derivative and setting it to zero

0= 5= = (logp() + 1)~ 3 Afilx) ~ .

The general form of the maximum entropy distribution
is then given by
1
p(x) = = e i Mifil) (178)
Z
where Z()\;) = [ dxeX: /i) is the partition function.
The maximum entropy distribution is clearly just
the usual Boltzmann distribution with energy E(x) =
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— > ; Aifi(x). The values of the Lagrange multipliers are
chosen to match the observed averages for the set of func-
tions {fi(x)} whose average value is being fixed:

<fi>model = /pr(X)fl(X) = ag)fz

= (fi)obs- (179)
In other words, the parameters of the distribution can be
chosen such that

a)\i 10g Z = <fi>data~ (180)

To gain more intuition for the MaxEnt distribution, it
is helpful to relate the Lagrange multipliers to the famil-
iar thermodynamic quantities we use to describe physical
systems ( , ). Our x denotes the microscopic
state of the system, i.e. the MaxEnt distribution is a
probability distribution over microscopic states. How-
ever, in thermodynamics we only have access to average
quantities. If we know only the average energy (F(X))obs,
the MaxFnt procedure tells us to maximize the entropy
subject to the average energy constraint. This yields

1 — X
p(x) = 7 °© FE,

(181)
where we have identified the Lagrange multiplier conju-
gate to the energy A\ = —f = 1/kpT with the (negative)
inverse temperature. Now, suppose we also constrain the
particle number (N(x))obs. Then, an almost identical
calculation yields a MaxEnt distribution of the functional
form

L BB -uN )

X)=—=¢e , 182
P = 5 (182)
where we have rewritten our Lagrange multipliers in
the familiar thermodynamic notation A\; = —f and

A2 = p/B. Since this is just the Boltzmann distribu-
tion, we can also relate the partition function in our
MaxFEnt model to the thermodynamic free-energy via
F = —p7llogZ. The choice of which quantities to
constrain is equivalent to working in different thermo-
dynamic ensembles.

2. From statistical mechanics to machine learning

The MaxEnt idea also provides a general procedure
for learning a generative model from data. The key dif-
ference between MaxEnt models in (theoretical) physics
and ML is that in ML we have no direct access to ob-
served values (fi)obs. Instead, these averaged must be
directly estimated from data (samples). To denote this
difference, we will call empirical averages calculated from
data as (f;)data. We can think of MaxEnt as a statisti-
cal inference procedure simply by replacing (f;)obs by
(fi)data above.

This subtle change has important implications for
training MaxEnt models. First, since we do not know



these averages exactly, but must estimate from the data,
our training procedures must be careful not to overfit to
the observations (our samples might not be reflective of
the true values of these statistics). Second, the averages
of certain functions f; are easier to estimate from limited
data than others. This is often an important considera-
tion when formulating which MaxEnt model to fit to the
data. Finally, we note that unlike in physics where con-
servation laws often guide the functions f; whose averages
we hold fix, ML offers no comparable guide for how to
choose the f; we care about. For these reasons, choos-
ing the {f;} is often far from straightforward. As a final
point, we note that here we have presented a physics-
based perspective for justifying the MaxFEnt procedure.
We mention in passing that the MaxEnt in ML is also
closely related to ideas from Bayesian inference ( ,

, ) and this latter point of view is more com-
mon in discussion of MaxEnt in the statistics and ML
literature.

3. Generalized Ising Models from MaxEnt

The form of a MaxEnt model is completely specified
once we choose the averages {f;} we wish to constrain.
One common choice often used in MaxFEnt modeling is to
constrain the first two moments of a distribution. When
our random variables x are continuous, the corresponding
MaxFEnt distribution is a multi-dimensional Gaussian. If
the x are binary (discrete), then the corresponding Max-
Ent distribution is a generalized Ising (Potts) model with
all-to-all couplings.

To see this, consider a random variable x with first
and second moments (;) data and (T; ;) data, respectively.
According to the Principle of Maximum Entropy, we
should choose to model this variable using a Boltzmann
distribution with constraints on the first and second mo-
ments. Let a; be the Lagrange multiplier associated with
(%i)data and J;;/2 be the Lagrange multiplier associated
with (2;2;)data. Using Eq. (179), it is easy to verify that
the energy function

1
E(X) = — Zale — 5 Z Jijxixj (183)
) 1]

satisfies the above constraints.

Partition functions for maximum entropy models are
often intractable to compute. Therefore, it is helpful to
consider two special cases where x has different support
(different kinds of data). First, consider the case that the
random variables x € R™ are real numbers. In this case
we can compute the partition function directly:

7 = /dxeaT"Jr%xT‘]x = (QW)”detJfle*%aT‘]_la.

(184)
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The resulting probability density function is,

p(x) = Z e B

(2m)ndetJ 1
m)"de

where ;4 = —J 'a and ¥ = —J~!. This, of course, is the
normalized, multi-dimensional Gaussian distribution.

Second, consider the case that the random variable x
is binary with x; € {—1,4+1}. The energy function takes
the same form as Eq. (183), but the partition function
can no longer be computed in a closed form. This model
is known as the Ising model in the physics literature, and
is often called a Markov Random Field in the machine
learning literature. It is well known to physicists that
calculating the partition function for the Ising Model is
intractable. For this reason, the best we can do is esti-
mate it using numerical techniques such MCMC methods
or approximate methods like variational MFT methods,
see Sec. XIV. Finally, we note that in ML it is common to
use binary variables which take on values in z; € {0,1}
rather than {£1}. This can sometimes be a source of con-
fusion when translating between ML and physics litera-
tures and can lead to confusion when using ML packages
for physics problems.

C. Cost functions for training energy-based models

The MaxEnt procedure gives us a way of parameteriz-
ing an energy-based generative model. For any energy-
based generative model, the energy function E(x,{6;})
depends on some parameters 6; — couplings in the lan-
guage of statistical physics — that must be inferred di-
rectly from the data. For example, for the MaxEnt mod-
els the {6;} are just the Lagrange multipliers {);} intro-
duced in the last section. The goal of the training pro-
cedures is to use the available training data to fit these
parameters.

Like in many other ML techniques, the way we will
fit these couplings is by minimizing a cost function us-
ing stochastic gradient descent (cf. Sec. IV). Such a pro-
cedure naturally separates into two parts: choosing an
appropriate cost function and calculating the gradient of
the cost function with respect to the model parameters.
Formulating a cost function for generative models is a lit-
tle bit trickier than for supervised, discriminative models.
The objective of discriminative models is straightforward
— predict the label from the features. However, what we
mean by a “good” generative model is much harder to
define using a cost function. We would like the model to
generate examples similar to those we find in the train-
ing dataset. However, we would also like the model to be



able to generalize — we do not want the model to repro-
duce “spurious details” that are particular to the train-
ing dataset. Unlike for discriminative models, there is
no straightforward idea like cross-validation on the data
labels that neatly addresses this issue. For this reason,
formulating cost functions for generative models is subtle
and an important and interesting open area of research.

Calculating the gradients of energy-based models also
turns out to be different than for discriminative models
such as deep neural networks. Rather than rely on au-
tomatic differentiation techniques and backpropagation
(see Sec. IX.D), calculating the gradient requires draw-
ing on intuitions from MCMC based methods. Below,
we provide an in-depth discussion of Boltzmann learning
for energy-based generative models, focusing on MaxEnt
models. We put the emphasis on training procedures
that generalize to more complicated generative models
with latent variables such as RBMs discussed in the
next section. Therefore, we largely ignore the incredi-
bly rich physics-based literature on fitting Ising-like Max-
Ent models (see the recent reviews ( , ;

, ) and references therein).

1. Maximum likelihood

By far the most common approach used for training a
generative model is to maximize the log-likelihood of the
training data set. Recall, that the log-likelihood char-
acterizes the log-probability of generating the observed
data using our generative model. By choosing the nega-
tive log-likelihood as the cost function, the learning pro-
cedure tries to find parameters that maximize the proba-
bility of the data. This cost function is intuitive and, for
this reason, has been the work-horse of most generative
modeling. However, we note that the Maximum Likeli-
hood estimation (MLE) procedure has some important
limitations that we will return to in Section XVII.

In what follows, we employ a general notation that is
applicable to all energy-based models, not just the Max-
Ent models introduced above. The reason for this is that
much of this discussion does not rely on the specific form
of the energy function but only on the fact that our gen-
erative model takes a Boltzmann form. We denote the
generative model by the probability distribution pg(x)
and its corresponding partition function by log Z({6;}).
In MLE, the parameters of the model are fit by maximiz-
ing the log-likelihood:

L({0:}) := (log (pe(x)))data
= —(E(x;{0:}))data — log Z({6;}), (186)
where we have set § = 1. In writing this expression we
made use of the fact that our generative distribution is

of the Boltzmann form and the fact that our partition
function does not depend on the data:

(log Z({0:}))data = log Z({0;}). (187)
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2. Regularization

Just as for discriminative models like a linear and lo-
gistic regression, it is common to supplement the log-
likelihood with additional regularization terms that pre-
vent overfitting (see Secs. VI and VII). Instead of mini-
mizing the negative log-likelihood, one minimizes a cost
function of the form

— L({0:}) + Ereg({0:}), (188)
where E,..({0;}) is an additional regularization term that
prevents overfitting. From a Bayesian perspective, this
new term can be viewed as encoding a (negative) log-
prior on model parameters and performing a maximum-
a-posteriori (MAP) estimate instead of a MLE (see cor-
responding discussion in Sec. VI).

As we saw with regression, different forms of regular-
ization give rise to different kinds of properties. A com-
mon choice for the regularization function are the sums
of the L1 or Ly norms of the parameters

Ereg({0:}) = AZ 10:%, o = (189)

with A denoting parameters that control the regulariza-
tion strength. For A = 0, there is no regularization and
we are simply performing MLE. In contrast, a choice of
large A will force many parameters to be close to or ex-
actly zero. Just as in regression, an L1 penalty enforces
sparsity, with many of the 6; are set to zero, and L2
regularization shrinks the size of the parameters towards
Zero.

One challenge of generative models is that it is often
difficult to choose the regularization strength A. Re-
call, that for linear and logistic regression A is chosen
to maximize the out-of-sample performance on a valida-
tion dataset (i.e. cross-validation). However, for gener-
ative models our data are usually unlabeled. For this
reason, choosing a regularization strength is more subtle
and there exists no universal procedure for choosing A.
One common strategy is to divide the data into a training
set and a validation set and monitor a summary statis-
tic such as the log-likelihood, energy distance ( ,

), or variational free-energy of the generative model
on the training and validation sets (the variational free-
energy was discussed extensively in Sec. XIV ) ( ,

). If the gap between the training and validation
datasets starts growing, one is probably overfitting the
model even if the log-likelihood of the training dataset
is still increasing. This also gives a procedure for “early
stopping” — a regularization procedure we introduced in
the context of discriminative models. In practice, when
using such regularizers it is important to try many dif-
ferent values of A and then try to use a proxy statistic
for overfitting to evaluate the optimal choice of A.



D. Computing gradients

We still need to specify a procedure for minimizing the
cost function. Omne powerful and common choice that
is widely employed when training energy-based models
is stochastic gradient descent (SGD) (see Sec. IV). Per-
forming MLE using SGD requires calculating the gradi-
ent of the log-likelihood Eq. (186) with respect to the
parameters ;. To simplify notation and gain intuition,
it is helpful to define “operators” O;(x), conjugate to the
parameters 6;

L 6E(x; 91)
0;(x) := 96, (190)
Since the partition function is just the cumulant gener-
ative function for the Boltzmann distribution, we know
that the usual statistical mechanics relationships between
expectation values and derivatives of the log-partition
function hold:

0log Z({0;

(013) moaer = Trepo(x)0i(x) = ~ B 1)
In terms of the operators {O;(x)}, the gradient of
Eq. (186) takes the form ( , )

_O0L({0:}) _ <3E(X;9i)> | Olog Z(16:})
801 801 data 801
= <Oi(x)>da‘ca - <Oi(x)>model~ (192)

These equations have a simple and beautiful interpre-
tation. The gradient of the log-likelihood with respect to
a model parameter is a difference of moments — one calcu-
lated directly from the data and one calculated from our
model using the current model parameters. The data-
dependent term is known as the positive phase of the
gradient and the model-dependent term is known as the
negative phase of the gradient. This derivation also gives
an intuitive explanation for likelihood-based training pro-
cedures. The gradient acts on the model to lower the en-
ergy of configurations that are near observed data points
while raising the energy of configurations that are far
from observed data points. Finally, we note that all infor-
mation about the data only enters the training procedure
through the expectations (O;(x))data and our generative
model is blind to information beyond what is contained
in these expectations.

To use SGD, we must still calculate the expectation
values that appear in Eq. (192). The positive phase of the
gradient — the expectation values with respect to the data
— can be easily calculated using samples from the training
dataset. However, the negative phase — the expectation
values with respect to the model — are generally much
more difficult to compute. We will see that in almost
all cases, we will have to resort to either numerical or
approximate methods. The fundamental reason for this
is that it is impossible to calculate the partition function
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exactly for most interesting models in both physics and
ML.

There are exceptional cases in which we can calcu-
late expectation values analytically. When this hap-
pens, the generative model is said to have a Tractable
Likelihood. One example of a generative model with a
Tractable Likelihood is the Gaussian MaxEnt model for
real valued data discussed in Eq. (185). The param-
eters/Lagrange multipliers for this model are the local
fields a and the pairwise coupling matrix J. In this case,
the usual manipulations involving Gaussian integrals al-
low us to exactly find the parameters y = —J 'a and
¥ = —J 7! yielding the familiar expressions j = (X)data
and ¥ = ((x — (X)data)(X — (X)data) data- These are
the standard estimates for the sample mean and covari-
ance matrix. Converting back to the Lagrange multipli-
ers yields

J = 7<(X - <X>data)(x - <X>data)T>ga1ta- (193)

Returning to the generic case where most energy-based
models have intractable likelihoods, we must estimate ex-
pectation values numerically. One way to do this is draw
samples Spodel = {X;} from the model py(x) and evalu-
ate expectation values using these samples:

> o).

X} €Smodel

<h(X)>model = /dxpe(x)h(x) ~ (194)

The samples from the model x; € Spoder are often re-
ferred to as fantasy particles in the ML literature and
can be generated using simple MCMC algorithms such
as Metropolis-Hasting which are covered in most modern
statistical physics classes. However, if the reader is unfa-
miliar with MCMC methods or wants a quick refresher,
we recommend the concise and beautiful discussion of
MCMC methods from both the physics and ML point-
of-view in Chapters 29-32 of David MacKay’s masterful
book ( , ).

Finally, we note that once we have the fantasy particles
(samples) from the model, we can also easily calculate
the gradient of an arbitrary expectation value {(g(x))model
using what is commonly called the “log-derivative trick”
in ML (Fu, ; , ):

{00 moaa = [ ax 70 g(x)

7 0log py(x)

o < 861 gix >m0dcl
= <Oi(x>9<x)>model

S 0ix)glx).

X; ESmodel

(195)

%

This expression allows us to take gradients of more com-
plex cost functions beyond the MLE procedure discussed
here.



E. Summary of the training procedure

We now summarize the discussion above and present a
general procedure for training an energy based model us-
ing SGD on the cost function (see Sec. IV). Our goal is to
fit the parameters of a model py({0;}) = Z~le EC:{0i}),
Training the model involves the following steps:

1. Read a minibatch of data, {x}.

2. Generate a random samplea (fantasy partscles)
{x'} ~ px using an MCMC algorithm (e.g.,
Metropolis-Hastings).

3. Compute the gradient of log-likelihood using these
samples and Eq. (192), where the averages are
taken over the minibatch of data and the fantasy
particles/samples from the model, respectively.

4. Use the gradient as input to one of the gradient
based optimizers discussed in section Sec. IV.

In practice, it is helpful to supplement this basic proce-
dure with some practical tricks that help training. As
with discriminative neural networks, it is important to
initialize the parameters properly and print summary
statistics during the training procedure on the training
and validation sets to prevent overfitting. These and
many other little practical tricks have been nicely sum-
marized in a short note from the Hinton group ( ,
).

A major computational and practical limitation of
these methods is that it is often hard to draw samples
from generative models. MCMC methods often have long
mixing-times (the time you have to run the Markov chain
to get uncorrelated samples) and this can result in bi-
ased sampling. Luckily, we often do not need to know
the gradients exactly for training ML models (recall that
noisy gradient estimates often help the convergence of
gradient descent algorithms) and we can significantly re-
duce the computational expense by running MCMC for
a reasonable time window. We will exploit this observa-
tion extensively in the next section when we discuss how
to train more complex energy-based models with hidden
variables.

XVI. DEEP GENERATIVE MODELS: LATENT VARIABLES
AND RESTRICTED BOLTZMANN MACHINES (RBMS)

The last section introduced many of the core ideas be-
hind energy-based generative models. Here, we extend
this discussion to energy-based models that include la-
tent or hidden variables.

Including latent variables in generative models greatly
enhances their expressive power — allowing the model to
represent sophisticated correlations between visible fea-
tures without sacrificing trainability. By having multiple
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layers of latent variables, we can even construct powerful
deep generative models that possess many of the same
desirable properties as the deep, discriminative neural
networks.

We begin with a discussion that tries to provide a sim-
ple intuition for why latent variables are such a powerful
tool for generative models. Next, we introduce a power-
ful class of latent variable models called Restricted Boltz-
mann Machines (RBMs) and discuss techniques for train-
ing these models. After that, we discuss Deep Boltzmann
Machines (DBMs), which have multiple layers of latent
variables. We then introduce the new Paysage package
for training energy-based models and demonstrate how
to use it on the MNIST dataset and samples from the
Ising model. We conclude by discussing recent physics
literature related to energy-based generative models.

A. Why hidden (latent) variables?

Latent or hidden variables are a powerful yet elegant
way to encode sophisticated correlations between observ-
able features. The underlying reason for this is that
marginalizing over a subset of variables — “integrating
out” degrees of freedom in the language of physics — in-
duces complex interactions between the remaining vari-
ables. The idea that integrating out variables can lead
to complex correlations is a familiar component of many
physical theories. For example, when considering free
electrons living on a lattice, integrating out phonons gives
rise to higher-order electron-electron interactions (e.g. su-
perconducting or magnetic correlations). More generally,
in the Wilsonian renormalization group paradigm, all ef-
fective field theories can be thought of as arising from
integrating out high-energy degrees of freedom (

)

Generative models with latent variables run this logic
in reverse — encode complex interactions between visible
variables by introducing additional, hidden variables that
interact with visible degrees of freedom in a simple man-
ner, yet still reproduce the complex correlations between
visible degrees in the data once marginalized over (in-
tegrated out). This allows us to encode complex higher-
order interactions between the visible variables using sim-
pler interactions at the cost of introducing new latent
variables/degrees of freedom. This trick is also widely
exploited in physics (e.g. in the Hubbard-Stratonovich
transformation ( , ; , ) or
the introduction of ghost fields in gauge theory (

, 1967)).
To make these ideas more concrete, let us revisit the

pairwise Ising model introduced in our discussion of Max-
Ent models (see Eq. (183)). The model is described by a



Boltzmann distribution with energy
1
E(V) = — Zaivl— — 5 Zvi‘]ijvjv
[ 17

where J;; is a symmetric coupling matrix that encodes
the pairwise constraints and a; enforce the single-variable
constraint.

Our goal is to replace the complicated interactions be-
tween the visible variables v;, encoded by J;;, by inter-
actions with a new set of latent variables h,. In order to
do this, it is helpful to rewrite the coupling matrix in a
slightly different form. Using SVD, we can always express
the coupling matrix in the form J;; = 25:1 WiuWip,
where {W;,,}; are appropriately normalized singular vec-
tors. In terms of W;,, the energy takes the form

(196)

EHop(V) = — Z a;V; — % ZviWiﬂWijj' (197)
i iju

We note that in the special case when both the v; €
{-1,+1} and W;, € {—1,+1} are binary variables, a
model with this form of the energy function is known as
the Hopfield model ( , ; , ).
The Hopfield model has played an extremely important
role in statistical physics, computational neuroscience,
and machine learning, and a full discussion of its prop-
erties is well beyond the scope of this review (see ( ,

) for a beautiful discussion that combines all these
perspectives). Therefore, here we refer to all energy func-
tions of the form Eq. (197) as (generalized) Hopfield mod-
els, even for the case when the W;, are continuous vari-
ables.

We now “decouple” the v; by introducing a set of
normally, distributed continuous latent variables h,, (in
condensed matter physics this is called a Hubbard-
Stratonovich transformation). Using the usual identity
for Gaussian integrals, we can rewrite the Boltzmann dis-
tribution for the generalized Hopfield model as

PPN § . . . .
eZi a;Vi+3 Ziju, viWi,nWinvj

p(v) = -
= o2 it Hu f dhuefé b= viWihy,
Z
[ dhe=E(v:h)

= (198)

where E(v,h) is a joint energy functional of both the
latent and visible variables of the form

E(v,h) == aw; + % S ohE = wiWihy,. (199)
i ,U. i

We can also use the energy function E(v,h) to define a
new energy-based model p(v,h) on both the latent and
visible variables

e—E(v,h)

p(v,h) = 7 (200)
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Hidden Layer

Interactions

Visible Layer

FIG. 61 A Restricted Boltzmann Machine (RBM) consists of
visible units v; and hidden units h, that interact with each
other through interactions of the form W;,v;h,. Importantly,
there are no interactions between visible units themselves or
hidden units themselves.

Marginalizing over latent variables of course gives us back
the generalized Hopfield model ( , )

e*EHOD (V)

p0) = [dnp(ey = S ooy

Notice that E(v,h) contains no direct interactions be-
tween visible degrees of freedom (or between hidden de-
gree of freedom). Instead, the complex correlations be-
tween the v; are encoded in the interaction between the
visible v; and latent variables h,. It turns out that the
model presented here is a special case of a more general

class of powerful energy-based models called Restricted
Boltzmann Machines (RBMs).

B. Restricted Boltzmann Machines (RBMs)

A Restricted Boltzmann Machine (RBM) is an energy-
based model with both visible and hidden units where the
visible and hidden units interact with each other but do
not interact among themselves. The energy function of
an RBM takes the general functional form

E(v,h) = — Z ai(vi) =Y bu(hy) - Z Wipvih,, (202)

where a;(-) and b,(-) are functions that we are free to
choose. The most common choice is:

a;V;
ai(vi) = { 52“

ﬁ’ if v; € R is continuous,

if v; € {0,1} is binary

and

if b, € {0,1} is binary

if h, € R is continuous.

b,h,,
bu(hy) == { :2 g

— K
2
QG'M

For this choice of a;(-) and b,,(-), layers consisting of dis-
crete binary units are often called Bernoulli layers and
layers consisting of continuous variables are often called
Gaussian layers. The basic bipartite structure of an RBM



— i.e., a visible and hidden layer that interact with each
other but not among themselves — is often depicted using
a graph of the form shown in Fig. 61.

An RBM can have different properties depending on
whether the hidden and visible layers are taken to be
Bernoulli or Gaussian. The most common choice is to
have both the visible and hidden units be Bernoulli. This
is what is typically meant by an RBM. However, other
combinations are also possible and used in the ML lit-
erature. When all the units are continuous, the RBM
reduces to a multi-dimensional Gaussian with a very par-
ticular correlation structure. When the hidden units are
continuous and the visible units are discrete, the RBM is
equivalent to a generalized Hopfield model (see discussion
above). When the the visible units are continuous and
the hidden units are discrete, the RBM is often called a
Gaussian Bernoulli Restricted Boltzmann Machine (

; , ). It is even
p0551b1e to perform multi-modal learning with a mixture
of continuous and discrete variables. For all these archi-
tectures, the important point is that all interactions occur
only between the visible and hidden units and there are
no interactions between units within the hidden or visi-
ble layers (see Fig. 61). This is analogous to Quantum
Electrodynamics, where a free fermion and a free photon
interact with one another but not among themselves.

Specifying a generative model with this bipartite inter-
action structure has two major advantages: (i) it enables
capturing both pairwise and higher-order correlations be-
tween the visible units and (ii) it makes it easier to sample
from the model using an MCMC method known as block
Gibbs sampling, which in turn makes the model easier to
train.

Before discussing training, it is worth better under-
standing the kind of correlations that can be captured
using an RBM. To do so, we can marginalize over the hid-
den units and ask about the resulting distribution over
just the visible units

—E(v,h)
p(v) :/dhp(v,h) :/dheT

(where the integral should be replaced by a trace in all
expressions for discrete units).

We can also define a marginal energy using the expres-
sion

(203)

e_E(v)

Z

p(v) == (204)

Combining these equations,
E(v)= —log/dhefE(v’h)

= ai(v) Zlog/dh P (hu)+ 20 viWinhy

©w
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To understand what correlations are captured by p(v) it
is helpful to introduce the distribution
ebu(hu)

Z
of hidden units h,, ignoring the interactions between v
and h, and the cumulant generating function

n tn
K,(t) = log/dh#qu(h#)ethu = Z'{L )n!.

n

m (hu) = (205)

(206)

cumulant is /i,(f) =

K, (t) is defined such that the n'*
07 K, li=o0-

The cumulant generating function appears in the
marginal free-energy of the visible units, which can be

rewritten (up to a constant term) as:

— Z a;(v;) — Z K, <Z Wiﬂ”l’)
_ Z(lz 'Uz Zzﬁ(n) Z Wz;ﬂh)
=Y a) - (Z F»,S”Wm>
D) Z (ZK WzHW]H> Vv A+

We see that the marginal energy includes all orders of in-
teractions between the visible units, with the n-th order
cumulants of g,(h,) weighting the n-th order interac-
tions between the visible units. In the case of the Hop-
field model we discussed previously, g, (h,) is a standard

= 0, the
variance is HL) = 1, and all higher order cumulants are
zero. Plugging these cumulants into Eq. (207) recovers
Eq. (199).

These calculations make clear the underlying reason
for the incredible representational power of RBMs with
a Bernoulli hidden layer. Each hidden unit can encode in-
teractions of arbitrarily high order. By combining many
different hidden units, we can encode very complex in-
teractions at all orders. Moreover, we can learn which
order of correlations/interactions are important directly
from the data instead of having to specify them ahead of
time as we did in the MaxEnt models. This highlights
the power of generative models with even the simplest in-
teractions between visible and latent variables to encode,
learn, and represent complex correlations present in the
data.

(207)

Gaussian distribution where the mean is /{f})

C. Training RBMs

RBMs are a special class of energy-based generative
models, which can be trained using the Maximum Like-
lihood Estimation (MLE) procedure described in detail



in Sec. XV. To briefly recap, first, we must choose a cost
function — for MLE this is just the negative log-likelihood
with or without an additional regularization term to pre-
vent overfitting. We then minimize this cost function us-
ing one of the Stochastic Gradient Descent (SGD) meth-
ods described in Sec. IV.

The gradient itself can be calculated using Eq. (192).
For example, for the Bernoulli-Bernoulli RBM in
Eq. (202) we have

L{Wip, aisbu})

Vs ) _ 1) = G (20
L W’L aai?b"
{ ;ai it = (vi)data — (Vi) model
E({WZ‘H, A, b,u,}) — <h/1,>data — <h#>model7
ab,,

where the positive expectation with respect to data is un-
derstood to mean sampling from the model while clamp-
ing the visible units to their observed values in the data.
As before, calculating the negative phase of the gradi-
ent (the expectation value with respect to the model)
requires that we draw samples from the model. Luck-
ily, the bipartite form of the interactions in RBMs were
specifically chosen with this in mind.

1. Gibbs sampling and contrastive divergence (CD)

The bipartite interaction structure of an RBM makes it
possible to calculate expectation values using a Markov
Chain Monte Carlo (MCMC) method known as Gibbs
sampling. The key reason for this is that since there are
no interactions of visible units with themselves or hidden
units with themselves; the visible and hidden units of an
RBM are conditionally independent:

p(vih) = Hp v;|h)

p(h|v) = Hp (hulv), (209)

with

p(i =1|h) = o(a; + Y Wiuhy)

“w
p(hu =1lv) = o(by + Z Wiuvi)

(210)

and where o(x) = 1/(1 + e~?) is the sigmoid function.
Using these expressions it is easy to compute expec-
tation values with respect to the data. The input to
gradient descent is a minibatch of observed data. For
each sample in the minibatch, we simply clamp the visi-
ble units to the observed values and apply Eq. (210) using
the probability for the hidden variables. We then average
over all samples in the minibatch to calculate expectation
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A Alternating Gibbs Sampling
t=0 t=1 t=2 t=00
([0 © o]l [0 o o [0 o o] C o]

[0 O]
data

[0 o] [o o]

B  Contrastive Divergence (CD-n)

t=0 t=1 t=2 t=n
([0 © o]l [0 o o [0 o o] C o]
: /
[0co] [0o] [00]
data
C Persistent Contrastive Divergence (PCD-n)
t=0 t=1 t=2 t=n

[o O]
fantasy particles
from last SGD step

[0 o] [o o]

FIG. 62 (Top) To draw fantasy particles (samples from
model) we can perform alternating (block) Gibbs sampling
between the visible and hidden layers starting with a sam-
ple from the data using the marginal distributions p(h|v)
and p(vih). The “time” ¢ corresponds to the time in the
Markov chain for the Monte Carlo and measures the num-
ber of passes between the visible and hidden states. (Middle)
In Contrastive Divergence (CD), we approximately sample
the model by terminating the Gibbs sampling after n steps
(CD-n) starting from the data. (C) In Persistent Contrastive
Divergence (PCD), instead of restarting our sample from the
data, we initialize the sampler with the fantasy particles cal-
culated from the model at the last SGD step.

values with respect to the data. To calculate expectation
values with respect to the model, we use (block) Gibbs
sampling. The idea behind (block) Gibbs sampling is
to iteratively sample from the conditional distributions
h;y1 ~ p(h|vy) and vy ~ p(vlihe1) (see Figure 62,
top). Since the units are conditionally independent, each
step of this iteration can be performed by simply draw-
ing random numbers. The samples are guaranteed to
converge to the equilibrium distribution of the model in
the limit that ¢ — co. At the end of the Gibbs sampling
procedure, one ends up with a minibatch of samples (fan-
tasy particles).

One drawback of Gibbs sampling is that it may take
many back and forth iterations to draw an independent
sample. For this reason, the Hinton group introduced
an approximate Gibbs sampling technique called Con-
trastive Divergence (CD) ( ,

). In CD-n, we just perform n 1terat10ns of (block)
Gibbs sampling, with n often taken to be as small as 1
(see Figure 62)! The price for this truncation is, of course,
that we are not drawing samples from the true model dis-
tribution. But for our purpose — using the expectations
to estimate the gradient for SGD — CD-n has been proven



to work reasonably well. As long as the approximate gra-
dients are reasonably correlated with the true gradient,
SGD will move in a reasonable direction. CD-n of course
does come at a price. Truncating the Gibbs sampler pre-
vents sampling far away from the starting point, which
for CD-n are the data points in the minibatch. Therefore,
our generative model will be much more accurate around
regions of feature space close to our training data. Thus,
as is often the case in ML, CD-n sacrifices the ability
to generalize to some extent in order to make the model
easier to train.

Some of these undesirable features can be tempered
by using a slightly different variant of CD called Persis-
tent Contrastive Divergence (PCD) (

, ). In PCD, rather than restarting the Gibbs
sampler from the data at each gradient descent step, we
start the Gibbs sampling at the fantasy particles (sam-
ples from the model) in the last gradient descent step (see
Figure 62). Since parameters change slowly compared to
the Gibbs sampling, samples that are high probability at
one step of the SGD are also likely to be high probabil-
ity at the next step. This ensures that PCD does not
introduce large errors in the estimation of the gradients.
The advantage of using fantasy particles to initialize the
Gibbs sampler is to allow PCD to explore parts of the
feature space that are much further from the training
dataset than once could reach with ordinary CD.

2. Practical Considerations

The previous section gave an overview of how to train
RBMs. However, there are many “tricks-of-the-trade”
that are missing from this discussion. Luckily, a succinct
summary of these has been compiled by Geoff Hinton
and published as a note that readers interested in train-
ing RBMs are urged to consult ( , ).

For completeness, we briefly list some of the important
points here:

e Initialization. The model must be initialized.
Hinton suggests taking the weights W;, from a
Gaussian with mean zero and standard deviation
o = 0.01 ( , ). An alternative initial-
ization scheme proposed by Glorot and Bengio in-
stead chooses the standard deviation to scale with
the size of the layers: ¢ = 2/4/N, + N}, where N,
and N, are number of visible and hidden units re-
spectively ( , ). The bias of
the hidden units is initialized to zero while the bias
of the visible units is typically taken to be inversely
proportional to the mean activation, a; = <Ui>(;a1ta'

¢ Regularization One can of course use an L1 or Lo
penalty, typically only on the weight parameters,
not the biases. Alternatively, Dropout has been
shown to decrease overfitting when training with
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Deep Boltzmann
Machine (DBM)

Layerwise
Pretraining

Fine-tuning with
PCD on full DBM

FIG. 63 Deep Boltzmann Machine contain multiple hidden
layers. To train deep networks, first we perform layerwise
training where each two layers are treated as a RBM. This
can be followed by fine-tuning using gradient descent and per-
sistent contrastive divergence (PCD).

CD and PCD and to result in more interpretable
learned features.

e Learning Rates Typically, it is helpful to reduce
the learning rate in later stages of training.

e Updates for CD and PCD There are several
computational tricks one can use for speeding up
the alternating updates in CD and PCD (see Sec-
tion 3 in ( , ).

D. Deep Boltzmann Machine

In this section, we introduce Deep Boltzmann Ma-
chines (DBMs). Unlike RBMs, DBMs possess multi-
ple hidden layers and were the first models rebranded
as “deep learning” ( , ;

, ) 13, Many of the advantages that
are thought to stem from having deep layers were al-
ready discussed in Sec. XI in the context of discrimina-
tive DNNs. Here, we revisit many of the same themes
with emphasis on energy-based models.

An RBM is composed of two layers of neurons that
are connected via an undirected graph, see Fig. 61. As
a result, it is possible to perform sampling v ~ p(v|h)
and inference h ~ p(h|v) with the same model. As with
the Hopfield model, we can view each of the hidden units
as representative of a pattern, or feature, that could be
present in the data. (In general, one should think of ac-
tivity patterns of hidden units representing features in
the data.) The inference step involves assigning a proba-
bility to each of these features that expresses the degree
to which each feature is present in a given data sample.

13 Technically, these were Deep Belief Networks (DBNs) where only
the top layer was undirected



In an RBM, hidden units do not influence each other dur-
ing the inference step, i.e. hidden units are conditionally
independent given the visible units. There are a num-
ber of reasons why this is unsatisfactory. One reason is
the desire for sparse, distributed representations, where
each observed visible vector will strongly activate a few
(i.e. more than one but only a very small fraction) of the
hidden units. In the brain, this is thought to be achieved
by inhibitory lateral connections between neurons. How-
ever, adding lateral intra-layer connections between the
hidden units makes the distribution difficult to sample
from, so we need to come up with another way of creat-
ing connections between the hidden units.

With the Hopfield model, we saw that pairwise linear
connections between neurons can be mediated through
another layer. Therefore, a simple way to allow for ef-
fective connections between the hidden units is to add
another layer of hidden units. Rather than just having
two layers, one visible and one hidden, we can add addi-
tional layers of latent variables to account for the corre-
lations between hidden units. Ideally, as one adds more
and more layers, one might hope that the correlations
between hidden variables become smaller and smaller
deeper into the network. This basic logic is reminiscent of
renormalization procedures that seek to decorrelate lay-
ers at each step ( , ; ,

; , ). The price of adding additional layers
is that the models become harder to train.

Training DBMs is more subtle than RBMs due to the
difficulty of propagating information from visible to hid-
den units. However, Hinton and collaborators realized
that some of these problems could be alleviated via a lay-
erwise procedure. Rather than attempting to the train
the whole DBM at once, we can think of the DBM as a
stack of RBMs (see Fig. 63). One first trains the bottom
two layers of the DBM — treating it as if it is a stand-
alone RBM. Once this bottom RBM is trained, we can
generate “samples” from the hidden layer and use these
samples as an input to the next RBM (consisting of the
first and second hidden layer — purple hexagons and green
squares in Fig. 63). This procedure can then be repeated
to pretrain all layers of the DBM.

This pretraining initializes the weights so that SGD
can be used effectively when the network is trained in a
supervised fashion. In particular, the pretraining helps
the gradients to stay well behaved rather than vanish or

J
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blow up — a problem that we discussed extensively in the
earlier sections of DNNs. It is worth noting that once pre-
trained, we can use the usual Boltzmann learning rules
(Eq. (192)) to fine-tune the weights and improve the per-
formance of the DBM ( , ;

) ). As we demonstrate in the next
section, the Paysage package presented here can be used
to both construct and train DBNs using such a pretrain-
ing procedure.
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FIG. 64 Samples (“fantasy particles” ) generated using the
indicated model trained on MNIST dataset. Samples were
generated by running (alternative) layerwise Gibbs sampling
for 100 steps. This allows the final sample to be very far
away from the starting point in our feature space. Notice
that the generated samples look much less like hand writ-
ten reconstructions than in Fig. 60 which uses a single max-
probability iteration of the Gibbs sampler, indicating that
training is much less effective when exploring regions of prob-
ability space faraway from the training data. In the next
section, we will argue that this is likely generic feature of
Likelihood-based training.

DBM RBM (L1) RBM Hopfi

E. Example: Using Paysage for MNIST

how to wuse
(French

In this section, we demonstrate
the new open source package Paysage
for landscape) for training unsupervised energy-
based models on the MNIST dataset. Paysage’s
documentation is available on GitHub under
https://github.com /drckf/paysage /tree /master /docs.
The package was developed by one of the authors (CKF)
along with his colleagues at Unlearn.Al and makes it
easy to build, train, and deploy energy-based generative
models with different architectures.

Below, we show how to build and train four different kinds of models: (i) a “Hopfield” type RBM with Gaussian
hidden units and Bernoulli (binary) visible units, (ii) a conventional RBM where both the visible and hidden units are
Bernoulli, (iii) a conventional RBM with an additional L;-penalty that enforces sparsity, and (iv) a Deep Boltzmann
Machine (DBM) with three Bernoulli layers with L; penalty each. In the following, we demonstrate the simplicity of
using Paysage walking the reader step-by-step through shorts snippets of code.

We kick off by loading the required packages. Note that Paysage requires Python 3.6 or higher (see additional guides
to install the package in Notebook 17). We also fix the seed of the random number generator to ensure reproducibility

of our numerical experiment.


https://github.com/drckf/paysage/tree/master/docs
https://physics.bu.edu/~pankajm/MLnotebooks.html
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from __future__ import print_function, division

import os

import paysage

from paysage.models.model import Model # model constructor

from paysage import optimizers # optimizer

from paysage.layers import Bernoullilayer, GaussianlLayer # layers
from paysage.batch import DataShuffler, HDFBatch # data handler

from paysage.fit import ProgressMonitor, SequentialMC, SGD, LayerwisePretrain, pcd
from paysage.schedules import PowerLawDecay # hyperparameter schedule
from paysage.models.model _utils import State

from paysage.penalties import 11_penalty # regularization

# fix random seed to ensure deterministic behavior
paysage.backends.set_seed(137)

We want to study the MNIST digit dataset. A preprocessed version of the data is conveniently built into Paysage,
and our first task is to download it. To this end, let us fetch the directory Paysage was installed in and print it:

##### download and preprocess MNIST data in Paysage

# fetch paysage directory

paysage_path=os.path.dirname (os.path.dirname(paysage.__file__))
mnist_path=os.path. join(paysage_path, , )
shuffled_mnist_path=os.path.join(paysage_path, s )
# print path to Paysage directory

print (paysage_path)

To download the data, open up a terminal and navigate to the Paysage directory to run python
mnist/download_mnist.py. We can also check if the data have been successfully downloaded:

# check if data has been loaded
if not os.path.exists(mnist_path):
raise IOError( .format (mnist_path)

)

If this is the first time using the data set, we need to shuffle it. This step is necessary, since we shall shortly
employ SGD-based algorithms in the training process (cf. Sec. IV) which requires using small minibatches of data to
compute the gradient at each step. If the data have an order, then the estimates for the gradients computed from the
minibatches will be biased. Shuffling the data ensures that the gradient estimates are unbiased (though still noisy).
The data can be compressed by setting ‘complevel > 0°, but we won’t use that here.

##### set up minibatch data generator

# shuffle data if running for the first time

if not os.path.exists(shuffled_mnist_path):
DataShuffler(mnist_path,shuffled_mnist_path, complevel=0).shuffle()

Next, we create a python generator, which splits the data into a training and validation sets, and separates them into
minibatches of size batch_size. Before we begin training, we set data to training mode.

# batch size

batch_size=100

# create data generator object with minibathces

data=HDFBatch(shuffled_mnist_path, , batch_size,
transform=paysage.preprocess.binarize_color,train_fraction=0.95)

# reset the data generator in training mode

data.reset_generator (mode= )

To monitor the progress of performance metrics during training, we define the variable performance which tells
Paysage to measure the reconstruction error from the validation set. Possible metrics include the reconstruction error
(used in this example) and metrics related to difference in energy of random samples and samples from the model
(see metrics.md in Paysage documentation for a complete list).

# the reconstruction error will be computed from the validation set
performance=ProgressMonitor(data,metrics=[ 1

Having loaded and preprocessed the data, we now move on to construct a hopfield model. To do this, we use the
Model class and with a visible BernoulliLayer and a hidden GaussianLayer. Note that the visible layer has the
same size as the input data points, which is read off data.ncols. The number of hidden units is num_hidden_units.


https://github.com/drckf/paysage/blob/master/docs/metrics.md
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We also standardize the mean and variance of the Gaussian layer setting them to zero and unity, respectively (the
nomenclature of Paysage here is inspired by the terminology in Variational Autoencoders, cf. Sec. XVII).

##### create hopfield model

# hidden units

num_hidden_units=200

# set up the model

hopfield=Model ([Bernoullilayer(data.ncols), # visible layer
GaussianLayer (num_hidden_units) # hidden layer

D
# set mean and standard deviation of hidden layer to to 0 and 1, respectively
hopfield.layers[1].set_fixed_params([ s D)

We choose to train the model with the Adam optimizer. To ensure convergence, we attenuate the learning_rate
hyperparameter according to a PowerLawDecay schedule: learning_rate(t) =initial/(1+coefficientxt). It will
prove convenient to define the function Adam_optimizer for this purpose.

# set up an optimizer method (ADAM in this case)

def ADAM_optimizer(initial,coefficient):
# define learning rate attenuation schedule
learning_rate=PowerLawDecay(initial=initial,coefficient=coefficient)
# return optimizer object
return optimizers.ADAM(stepsize=learning_rate)

Next, we have to create the model. First, we initialize the model using the initialize function attribute which
accepts the data as a required argument. We choose the initialization routine glorot, cf. discussion in Sec XVI.C.2.
Second, we define an optimizer calling the function Adam_optimizer, and store the object under the name opt. To
create an MCMC sampler, we use the method from_batch of the SequentiallMC class, passing the model and the
data. Last, we create an SGD object called trainer to train the model using Persistent Contrastive Divergence (pcd)
with a fixed number of monte_carlo_steps. We can also monitor the reconstruction error during training. Last,
we train the model in epochs (cf. variable num_epochs), calling the train() method of trainer. These steps are
universal for shallow generative models, and it is convenient to combine them in the function train_model, which we
shall use repeatedly.

# define function to compile and train model
num_epochs=20 # training epochs
monte_carlo_steps=1 # number of MC sampling steps
def train_model (model,num_epochs,monte_carlo_steps,performance) :
# make a simple guess for the initial parameters of the model
model.initialize(data,method= )
# set optimizer
opt=ADAM_optimizer(1E-2,1.0)
# set up a Monte Carlo sampler
sampler=SequentialMC. from_batch(model,data)
# use persistent contrastive divergence to fit the model
trainer=SGD (model,data,opt,num_epochs, sampler,
method=pcd,mcsteps=monte_carlo_steps,monitor=performance)
# train model
trainer.train()
# train hopfield model
train_model (hopfield,num_epochs,monte_carlo_steps,performance)

Let us now show how to build a few more generative models with Paysage. We can easily create a Bernoulli RBM
and train it using the functions defined above as follows:

##### Bernoulli RBM
rbm = Model([Bernoullilayer(data.ncols), # visible layer
BernoullilLayer (num_hidden_units) # hidden layer

D
# train Bernoulli RBM

train_model (rbm,num_epochs,monte_carlo_steps,performance)

Constructing a Bernoulli RBM with L1 regularization is also straightforward in Paysage, using the add_penalty
method which accepts a dictionary as an input. Some layers may have multiple properties (such as the location and
scale parameters of a Gaussian layer) so the dictionary key specifies to which property the penalty should be applied
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##### Bernoulli RBM with L1 regularizer
rbm_L1 = Model([Bernoullilayer(data.ncols), # visible layer
Bernoullilayer (num_hidden_units) # hidden layer

D
# add an L1 penalty to the weights
rbm_L1.weights[0].add_penalty({ :11_penalty(le-3)})

# train Bernoulli RBM with L1 regularizer
train_model (rbm_L1,num_epochs,monte_carlo_steps,performance)

To define a deep Boltzmann machine (DBM), we just add more layers, and an L1 penalty for every layer.

##### Deep Boltzmann Machine

# set up the model

dbm_L1 = Model([Bernoullilayer(data.ncols), # visible layer
BernoullilLayer (num_hidden_units), # hidden layer 1
Bernoullilayer (num_hidden_units) # hidden layer 2
D

# add an L1 penalty to the weights

for weight in dbm_L1.weights:

weight.add_penalty({ :11_penalty(le-3)})

Recalling the essential trick with layer-wise pre-training to prepare the weights of the DBM, we define a pretrainer
as an object of the LayerwisePretrain class (see code snippet below). This results in a slight modification of the
function train_model.

# add pre-training
def train_model (model,num_epochs,monte_carlo_steps, performance):
# make a simple guess for the initial parameters of the model
model.initialize(data,method= )
# set SGD rlAetrain optimizer
opt=ADAM_optimizer(1E-2,1.0)
# set up a Monte Carlo sampler
sampler = SequentiallMC.from_batch(model, data)
# check if model is deep
is_deep = model.num_layers > 2
if is_deep:
print( )
pretrainer = LayerwisePretrain(model, data, opt, num_epochs,
method=pcd, mcsteps=monte_carlo_steps,
metrics=[ D
pretrainer.train()
# reset the optimizer using a lower learning rate
opt = ADAM optimizer(initial/10.0, coefficient)
print( )
# use persistent contrastive divergence to fit the model
trainer=SGD (model,data,opt,num_epochs, sampler,
method=pcd,mcsteps=monte_carlo_steps,monitor=performance)
# train model
trainer.train()
# train DBM
train_model (dbm_L1,num_epochs,monte_carlo_steps,performance)

Having trained our models, let us see how they perform by computing some reconstructions and fantasy particles
from the validation data. Recall that a reconstruction v’ of a given data point x is computed in two steps: (i) we
fix the visible layer v = x to be the data, and use MCMC sampling to find the state of the hidden layer h which
maximizes the probability distribution p(h|v). (ii) fixing the same obtained state h, we find the reconstruction v’ of
the original data point which maximizes the probability p(v’|h). In the case of a DBM, the forward pass continues
until we reach the last of the hidden layers, and the backward pass goes in reverse. A configuration sampled from an
RBM needs to specify the values of both the visible and hidden units. Since the data only specify the visible units,
we need to initialize some hidden unit values. The visible and hidden units are stored in a State object. To compute
reconstructions, we define an MCMC sampler based on the trained model. The stating point for the MCMC sampler is
set using the set_state() method. To compute reconstructions, we need to keep the probability distribution learned
by the generative model fixed which is done with the help of the deterministic_iteration function method, that
takes in its first argument the number of passes (1 for a single v.— h — v’ pass), and the state of the sampler
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sampler.state as required arguments. We can combine these steps in the function compute_reconstructions.
Figure 60 shows the result.

125 ##### compute reconstructions
126 def compute_reconstructions(model, data):

nin
127

128 Computes reconstructions of the input data.

129 Input v -> h -> v’ (one pass up one pass down)

130

131 Args:

132 model: a model

133 data: a tensor of shape (num_samples, num_visible_units)
134

135 Returns:

136 tensor of shape (num_samples, num_visible_units)

137

138 e

139 # a configuration sampled from an RBM needs to specify the values
140 # of both the visible and hidden units

141 # since the data only specify the visible units, we need to initialize
142 # some hidden unit values

143 # the visible and hidden units are stored in a State object
144 data_state=State.from visible(data,model)

145 # define MC sampler

146 sampler=SequentialMC(model)

147 # define a starting point for MC sampler

148 sampler.set_state(data_state)

149 # compute reconstructions

150 recons=model.deterministic_iteration(l,sampler.state).units[0]
151 #

152 return paysage.backends.to_numpy_array(recons)

Once we have the trained models ready, we can use MCMC to draw samples from the corresponding probability
distributions, called “fantasy particles”. To this end, let us draw a random_sample from the validation data and
compute the model_state. Next, we define an MCMC sampler based on the model, and set its state to model_state.
To compute the fantasy particles, we do layer-wise Gibbs sampling for a total of n_steps equilibration steps. The last
step (controlled by the boolean mean_field) is a final mean-field iteration (see tricks discussed in (Hinton, 2012)).
Figure 64 shows the result.

154 ##### compute fantasy particles
155 def compute_fantasy_particles(model,data,num_steps,mean_field=True):

157 Draws samples from the model using Gibbs sampling Markov Chain Monte Carlo .
158 Starts from randomly initialized points.

159

160 Args:

161 model: a model

162 data: a tensor of shape (num_samples, num_visible_units)
163 num_steps (int): the number of update steps

164 mean_field (bool; optional): run a final mean field step to compute probabilities
165

166 Returns:

167 tensor of shape (num_samples, num_visible_units)

168

169 e

170 # compute random data sample

171 random_sample=model .random(data)

172 # get model state from visible layer

173 model_state=State. from_visible(random_sample,model)

174 # define MC sampler

175 sampler=SequentialMC(model)

176 # change sampler state

177 sampler.set_state(model_state)

178 # does n_steps forward and backward passes
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sampler.update_state(num_steps)
if mean_field: # see Hinton’s 2012 paper:
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trick (practical guide for training)

fantasy_particles=model.mean_field_iteration(l,sampler.state).units[0]

else:
fantasy_particles=sampler.state.units[0]
#

return paysage.backends.to_numpy_array(fantasy_particles)

One can use generative models to reduce the noise in images (de-noising).

Let us randomly flip a fraction,

fraction_to_£flip, of the black&white bits in the validation data, and use the models defined above to reconstruct

(de-noise) the digit images. Figure 65 shows the result.

##### denoise MNIST images
# get validation data
examples = data.get(mode=

) # shape (batch_size,

784)

# reset data generator to beginning of the validation set

data.reset_generator(mode= )

# add some noise to the examples by randomly flipping some pixels @ -> 1 and 1 -> 0

fraction_to_£f1ip=0.15
# create flipping mask

flip_mask=paysage.backends.rand_like(examples) < fraction_to_flip

# compute noisy data

noisy_data=(1-flip_mask) * examples + flip_mask *
# define number of digits to display
num_to_display=8

# compute de-noised images

(1 - examples)

hopfield_denoised=compute_reconstructions(hopfield,noisy_datal:num_to_display])
rbm_denoised=compute_reconstructions(rbm,noisy_data[:num_to_display])
rbmL1_denoised=compute_reconstructions(rbmL1l,noisy_data[:num_to_display])
dbm_L1_denoised=compute_reconstructions(dbm_L1,noisy_data[:num_to_display])

The full code used to generate Figs. 60, 64 and 65 is available in Notebook 17.

F. Example: Using Paysage for the Ising Model

We can also use Paysage to analyze the 2D Ising data
set. In previous sections, we used our knowledge of the
critical point at T./J = 2.26 (see Onsager’s solution) to
label the spin configurations and study the problem of
classifying the states according to their phase of matter.
However, in more complicated models, where the precise
position of T, is not known, one cannot label the states
with such an accuracy, if at all.

As we explained, generative models can be used to
learn a variational approximation for the probability dis-
tribution that generated the data points. By using only
the 2D spin configurations, we now want to train a
Bernoulli RBM, the fantasy particles of which are ther-
mal Ising configurations. Unlike in previous studies of
the Ising dataset, here we perform the analysis at a fixed
temperature 7. We can then apply our model at three
different values T' = 1.75,2.25,2.75 in the ordered, criti-
cal and disordered regions, respectively.

We define a Deep Boltzmann machine with two hidden
layers of Npidden and Npiaden/10 units, respectively, and
apply L regularization to all weights. As in the MNIST
problem above, we apply layer-wise pre-training, and de-
ploy Persistent Contrastive Divergence to train the DBM
using ADAM.

(

One of the lessons from this problem is that, similar to
real-life problems, this task is computationally intensive
(Notebook 17). The training time on present-day laptops
easily exceeds that of previous studies from this review.
Thus, we encourage the interested reader to try GPU-
based training and study the resulting speed-up.

Figures 66, 67 and 68 show the results of the numerical
experiment at T/J = 1.75,2.25,2.75 respectively, for a
DBM with Npigden = 800. Looking at the reconstructions
and the fantasy particles, we see that our DBM works
well in the disordered and critical regions. However, the
chosen layer architecture is not optimal for T' = 1.75 in
the ordered phase.

G. Generative models in physics

Generative models have been studied in the context of
physics. For instance, in Biophysics, dynamic Boltzmann
distributions have been used as effective models in chem-
ical kinetics ( , ). In Statistical Physics,
they were used to identify the criticality in the Ising
model ( , ). In parallel, tools
from Statistical Physics have been applied to analyze the
learning ability of RBMs (

), characterizing the sparsity of the Welghts the ef—
fective temperature, the nonlinearities in the activation


https://physics.bu.edu/~pankajm/MLnotebooks.html
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FIG. 65 Images from MNIST were randomly corrupted by
adding noise. These noisy images were used as inputs to the
visible layer of the generative model. The denoised images
are obtained by a single “deterministic” (max probability) it-
eration v — h — v/,

functions of hidden units, and the adaptation of fields
maintaining the activity in the visible layer (

, ). Spin glass theory motivated a deter-
ministic framework for the training, evaluation, and use
of RBMs ( ; ); it was demonstrated that
the training process in RBMs itself exhibits phase tran-
sitions ( , ); learning in RBMs was
studied in the context of nonequilibrium thermodynam-
ics ( , ), and spectral dynamics ( ,

); mean-field theory found application in analyzing
DBMs ( , ). Another interesting direction of
research is the use of generative models to improve Monte
Carlo algorithms ( , ;

: ; , ). Ideas
from quantum mechanics have been put forward to in-
troduce improved speed-up in certain parts of the learn-
ing algorithms for Helmholtz machines ( ,

) )'

At the same time, generative models have applications
in the study of quantum systems too. Most notably,
an RBM-inspired variational ansatzes were used to learn
the probability distribution associated with the absolute
square of a quantum state ( , ;

) and, in this context, RBMs are sometimes called
Born machines ( , ). Further applica-
tions include the detection of order in low-energy product
states ( , ), and learning Einstein-Podolsky-
Rosen correlations on an RBM ( , ). In-
spired by the success of tensor networks in physics, the
latter have been used as a basis for RBMs ( ,

) to extract the spatial geometry from entangle-
ment ( , ), and generative models based
on matrix product states have been developed (
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, ). Last but not least, Quantum entangle-
ment was studied using RBM-encoded states ( ,
) and tensor product based generative models have
been used to understand MNIST and other ML datasets

( » 2016).

XVII. VARIATIONAL AUTOENCODERS (VAES) AND
GENERATIVE ADVERSARIAL NETWORKS (GANS)

In the previous two sections, we considered energy-
based generative models. Here, we extend our discus-
sion to two new generative model frameworks that have
gained wide appeal in the the last few years: generative
adversarial networks (GANs) ( , ;

, ; , ) and variational
autoencoders (VAEs) ( , ). Un-
like energy-based models, both these generative modeling
frameworks are based on differentiable neural networks
and consequently can be trained using backpropagation-
based methods. VAEs, in particular, can be easily im-
plemented and trained using high-level packages such as
Keras making them an easy-to-deploy generative frame-
work. These models also differ from the energy-based
models in that they do not directly seek to maximize like-
lihood. GANSs, for example, employ a novel cost function
based on adversarial learning (a concept we motivate and
explain below). Finally we note that VAEs and GANs are
already starting to make there way into the physics (

, ; , ) and astronomy (
, ), and methods from physics may prove useful
for furthering our understanding of these methods (

, ). More generally, GANs have found
important applications in many artistic and image ma-
nipulation tasks (see references in ( , ).

The section is organized as follows. We start by moti-
vating adversarial learning by discussing the limitations
of maximum likelihood based approaches. We then give
a high-level introduction to the main idea behind gen-
erative adversarial networks and discuss how they over-
come some of these limitations, simultaneously highlight-
ing both the power of GANs and some of the difficulties.
We then show how VAEs integrate the variational meth-
ods introduced in Sec. XIV with deep, differentiable neu-
ral networks to build more powerful generative models
that move beyond the Expectation Maximization (EM).
We then briefly discuss VAEs from an information theo-
retic perspective, before discussing practical tips for im-
plementing and training VAEs. We conclude by using
VAEs on examples using the Ising and MNIST datasets
(see also Notebooks 19 and 20).


https://physics.bu.edu/~pankajm/MLnotebooks.html
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FIG. 66 MC samples, their reconstructions and fantasy particles generated by a Deep Boltzmann Machine in the ordered
phase of the the 2D Ising data set at 7'/J = 1.75. We used two hidden layers of 1000 and 100 layers, respectively.
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FIG. 67 MC samples, their reconstructions and fantasy particles generated by a Deep Boltzmann Machine in the critical
regime of the the 2D Ising data set at T'/J = 2.25. We used two hidden layers of 1000 and 100 layers, respectively.

A. The limitations of maximizing Likelihood

The Kullback-Leibler (KL)-divergence plays a central
role in many generative models. Developing an intuition
about KL-divergences is one of the keys to understanding
why adversarial learning has proved to be such a power-
ful method for generative modeling. Here, we revisit the
KL-divergence with an eye towards understanding GANs
and motivate adversarial learning. The KL-diveregence
measures the similarity between two probability distribu-
tions p(x) and ¢(x). Strictly speaking, the KL divergence
is not a metric because it is not symmetric and does not
satisfy the triangle inequality.

Given two distributions, there are two distinct KL-
divergences we can construct:

Dicelplla) = [ dxplo) 10g58 (211)
Dislally) = [dxaeotos 2. (212)

A related quantity called the Jensen-Shannon divergence,

o )

does satisfy all of the properties of a squared metric (i.e.,
the square root of the Jensen-Shannon divergence is a
metric). An important property of the KIL-divergence
that we will make use of repeatedly is its positivity:
Dkr(pllg) > 0 with equality if and only if p(x) = ¢(x)
almost everywhere.

In generative models in ML, the two distributions
we are usually concerned with are the model distribu-
tion pp(x) and the data distribution pgata(x). We of
course would like these models to be as similar as possi-
ble. However, as we discuss below, there are many sub-
tleties about how we measure similarities that can have
large consequences for the behavior of training proce-
dures. Maximizing the log-likelihood of the data under
the model is the same as minimizing the KL divergence
between the data distribution and the model distribu-
tion Dgr,(Pdatal|pe). To see this, we can rewrite the KL
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FIG. 68 MC samples, their reconstructions and fantasy particles generated by a Deep Boltzmann Machine in the disordered
phase of the the 2D Ising data set at 7'/J = 2.75. We used two hidden layers of 1000 and 100 layers, respectively.

divergence as:

DKL(pdataHpQ) = /dxpdata(x) Ingdata(X)

- / dxpaata(x) log py(x)
= —S[pdata] — (logpg(x))data  (213)
Rearranging this equation, we have
(log pa(V))data = —S[Pdata] — DrL(Pdatallpe) — (214)

The equivalence follows from the positivity of KL-
divergence and the fact that the entropy of the data
distribution is constant. In contrast, the original for-
mulation of GANs minimizes an upper bound on the
Jensen-Shannon divergence between the model distribu-
tion py(x) and the data distribution pgata(x) (

This difference in objectives underlies the difference in
behavior between GANs and likelihood based generative
models. To see this, we can compare the behavior of the
two KL-divergences Dgr,(Pdatal|pe) and Dxr(po||pdata)-
As is evident from Fig. 69 and Fig. 70, though both of
these KL-divergences measure similarities between the
two distributions, they are sensitive to very different
things. D (pe||pdata) is insensitive to setting py ~ 0
even when pgata # 0 whereas Dxr (Pdatal|pe) punishes
this harshly. In contrast, Dgr (Pdatal|pe) is insensitive
to placing weight in the model distribution in regions
where pqata = 0 whereas Dy (pg||pdata) punishes this
harshly. In other words, D (pdatal|lpe) prefers models
that have a high probability in regions with lots of train-
ing data points whereas D, (pg||Pdata) punishes models
for putting high probability where there is no data.

In the context of the above discussion, this suggests
that the way likelihood-based methods are most likely to
fail, is by improperly “filling in” any low-probability den-
sity regions between peaks in the data distribution. In

contrast, at least in principle, the Jensen-Shannon distri-
bution which underlies GANSs is sensitive both to placing
weight where there is data since it has information about
Dk 1. (Pdatal|lPe) and to not placing weight where no data
has been observed (i.e. in low-probability density regions)
since it has information about D1, (psl|pdata)-

In practice, Dgr(pdatallpe) can be calculated easily
directly from the data using sampling. On the other
hand, Dk, (pe||pdata) is impossible to compute since we
do not know pgata(x). In particular, this integral cannot
be calculated using sampling since we cannot evaluate
Pdata(X) at the locations of the fantasy particles. The
idea of adversarial learning is to circumnavigate this dif-
ficulty by using an adversarial learning procedure. Re-
call, that D1, (pg||pdata) is large when the model artifi-
cially over-weighs low-density regions near real peaks (see
Fig. 69). Adversarial learning accomplishes this same
task by teaching a discriminator network to distinguish
between real data points and samples generated from the
model. By punishing the model for generating points
that can be easily discriminated from the data, adversar-
ial learning decreases the weight of regions in the model
space that are far away from data points — regions that
inevitably arise when maximizing likelihood. This core
intuition implicitly underlies many adversarial training
algorithms (though it has been recently suggested that
this may not be the entire story ( , ).

B. Generative models and adversarial learning

Here, we give a brief high-level overview of the ba-
sic idea behind GANs. The mathematics and theory
of GANs draws deeply from concepts in Game Theory
such as Nash Equilibrium that are foreign to most physi-
cists. For this reason, a comprehensive discussion of
GANSs is beyond the scope of the review. Readers inter-
ested in learning more are directed to the comprehensive
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FIG. 69 KL-divergences between the data distribution pgata
and the model py. Data is drawn from a bimodal Gaus-
sian distribution with unit variances peaked at +A with
A = 2.0 and the model pg(z) is a Gaussian with mean zero
and same variance as pg(z). (Top) pdata and pg for A = 2.
(Bottom) Dxr(pdatallpe) (Data-Model) and Dxr(pg||pdata)
(Model-Data) as a function of A. Notice that Dx 1, (pdatal|pe)
is insensitive to placing weight in the model distribution in
regions where pdasa &~ 0 whereas D1 (po||pdata) punishes this
harshly.

tutorial by Goodfellow (Goodfellow, 2016). GANs are
also notorious for being hard to train. For this reason,
readers wishing to play with GANs should also consider
the very nice practical discussion entitled “How to train
a GAN” (affectionately labeled “ganhacks”) available at
https://github.com/soumith/ganhacks.

The central idea of GANs is to construct two differ-
entiable neural networks (see Fig. 71). The first neural
network, usually a (de)convolutional network based on
the DCGAN architecture (Radford et al., 2015), approx-
imates a generator function G(z;60¢) that takes as input
a z sampled from some prior on the latent space, and out-
puts a x from the model. The second network approxi-
mates a discriminator function D(x;6p) that is designed
to distinguish between x from the data and samples gen-
erated by the model: x = G(z;60¢). The scalar D(x) rep-
resents the probability that x came from the data rather
than the model pg,. We train D to distinguish actual
data points from synthetic examples and the generative
network to fool the discriminative network.
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FIG. 70 KL-divergences between the data distribution paata
and the model pg. Data is drawn from a Gaussian mixture
of the form pgata = 0.25N(—A) + 0.25 x N(A) + 0.5N(0)
where A(a) is a normal distribution with unit variance cen-
tered at * = a. pg(x) is a Gaussian with o> = 2. (Top)
Ddata and pp for A = 5. (Middle) pdata and pg for A = 1.
(Bottom) D (pdatal|pe) [Data-Model] and Dxr(po||pdata)
[Model-Datal as a function of A. Notice that Dxr(po||pdata)
is insensitive to placing weight in the model distribution in
regions where py =~ 0 whereas D1 (Pdatal|pe) punishes this
harshly .

To define the cost function for training, it is useful to
define the functional

V(D,G) = Exepy,.. log D(x)

+ Ezlog[1 — D(G(z))].

(215)
(216)

In the version of GANs most amenable to theoretical
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FIG. 71 A GAN consists of two differentiable functions (usu-
ally represented as deep neural networks): a generator func-
tion G(z;60c) that takes as an input a z sampled from some
prior on the latent space and outputs a point x. The generator
function (neural network) has parameters 6. The discrim-
inator function D(x;60p) discriminates between x from the
data and samples from the model: x = G(z;60¢g). The two net-
works are trained by “playing a game” where the discriminator
is trained to distinguish between synthetic and real examples
while the generator is trained to try to fool the discriminator.
Importantly, the cost function for the discriminator also de-
pends on the generator parameters and the cost function for
the generator depends on the discriminator parameters.

analysis — though not the version usually implemented
in practice — we take the cost function for the discrimi-
nator and generators to be (%) = —C(P) = 1V(D,G).
This choice of cost functions corresponds to what is called
a zero-sum game. Since the discriminator is maximized,
we can write a cost function for the generator as
C(G) = mg,xV(G, D). (217)
It turns out that this cost function is related to the
Jensen-Shannon Divergence in a simple manner (

: ; ; ):
C(G) = —log4 + 2JS(pdata; Poc )- (218)

This brings us back full circle to the discussion in the last
section on KL-divergences.
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FIG. 72 VAEs learn a joint distribution pg(x,z) between
latent variables z with prior distribution p(z) and data x.
The conditional distribution pg(x|z) can be thought of as a
stochastic “decoder” that maps latent variables to new ex-
amples. The stochastic “encoder” g4(z|x) approximates the
true but intractable py(z|x) — much like mean-field theories
in statistical physics approximate true distributions with an-
alytically tractable approximations. Figure based on Kingma
Ph.D. dissertation Chapter 2. ( , ).

C. Variational Autoencoders (VAEs)

We now turn our attention to another class of powerful
latent-variable, generative models called Variational Au-
toencoders (VAEs). VAEs exploit the variational /mean-
field theory ideas presented in Sec. XIV to build complex
generative models using deep neural networks (DNNs).
The central idea behind VAEs is to represent the map
from latent variables to observable variables using a
DNN. The use of latent variables is a common theme
in many of the generative models we have encountered in
unsupervised learning tasks from Gaussian Mixture Mod-
els (see Sec. XIII) to Restricted Boltzmann Machines.
However, in VAEs this mapping, p(x|z,8) is much less
restrictive and much more complicated since it takes the
form of a DNN. This added complexity means we can-
not use techniques such as Expectation Maximization to
train the model and instead must rely of methods based
on backpropagation.



1. VAEs as variational models

We start by discussing VAEs from a variational per-
spective. We will make extensive use of the concepts
introduced in Sec. XIV and the reader is strongly-
encouraged to refresh their memory of this section before
proceeding. A VAE is a latent-variable model py(x,z)
with a latent space z and observed variables x. The latent
variables are drawn from some pre-specified prior distri-
bution p(z). In practice, p(z) is almost always taken to
be a multivariate Gaussian. The conditional distribution
pe(x|z) maps points in the latent space to new examples
(see Fig. 72). This is often called a “stochastic decoder”
and defines the generative model for the data. The re-
verse mapping that gives the posterior over the latent
variables pg(z|x) is often called the “stochastic encoder”.

A central challenge in latent variable modeling is to in-
fer the posterior distribution of the latent variables given
a sample from the data. This can in principle be done
via Bayes’ rule: py(z|x) = %ﬁx@)‘lz). For some models,
we can calculate this analytically. In this case, we can
use techniques like Expectation Maximization (EM) (see
Sec. XIV). However, in general this is intractable since
the denominator requires computing a sum over all con-
figurations of the latent variables, pg(x) = [ pg(x,2z)dz =
| po(x|z)p(z)dz (i.e. a partition function in the language
of physics), which is often intractable for large models.
In VAEs, where the py(x|z) is modeled using a DNN, this
is impossible.

A first attempt to address the issue of computing
p(x) could be through importance sampling ( , ).
That is, we choose a proposal distribution ¢(z|x) which
is easy to sample from, and rewrite the sum as an expec-
tation with respect to this distribution:

“%%mmm

T(z\x (219)

pi(x) = [ pxlz)
Thus, by sampling from ¢4 (z|x) we can get a Monte Carlo
estimate of p(x). However, this requires generating sam-
ples and thus our estimates will be noisy. If our proposal
distribution is poor, the variance in the estimate can be
very high.

An alternative approach that avoids these sampling
issues is to use the variational approach discussed in
Sec. XIV. We know from Eq. (160) that we can write
the log-likelihood as

log p(x) = Dk r(q4(2|x)po (2|, 0)) — Fy, (x), (220)

where the variational free energy is defined as

— Fy, (%) = By, (alx) [log po(x, 2)] — Dk 1.(44(2[x)[p(2)).
(221)
In writing this term, we have used Bayes rule and
Eq. (172). Since the KL-divergence is strictly positive,
the (negative) variational free energy is a lower-bound on
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the log-likelihood. For this reason, in the VAE literature,
it is often called the Evidence Lower BOund or ELBO.

Equation (221) has a beautiful interpretation. The
first term in this equation can be viewed as a “recon-
struction error”, where we start with data x, encode it
into the latent representation using our approximate pos-
terior ¢,(z|x), and then evaluate the log probability of
the original data given the inferred latents. For binary
variables, this is just the cross-entropy which we first en-
countered when studying logistic regression, cf. Sec. VII.
The second term acts as a regularizer and encourages the
posterior distributions to be close to p(z). By maximizing
the ELBO, we minimize the KL-divergence between the
approximate and true posterior. By choosing a tractable
¢4(z|x), we make this feasible (see Fig. 72).

2. Training via the reparametrization trick

VAEs train models by minimizing the variational free
energy (maximizing the ELBO). Training a VAE is some-
what complicated because we must simultaneously learn
two sets of parameters: the parameters 6 that define our
generative model py(x,z) as well as the variational pa-
rameters ¢ in gy(z|x). The basic approach will be the
same as for all DNN models: we will use gradient de-
scent with the variational free energy as the objective
(cost) function. For a dataset £, we can write our cost
function as

Co.6(L) = D —Fy,(x).

xeLl

(222)

Taking the gradient with respect to 6 is easy since only
the first term in Eq. (221) depends on 6,

Co,6(X) = Eq,(2x)[Va log po(x,2)]

~ Vg log ps(x,z) (223)

where in the second line we have replaced the expec-
tation value with a single Monte-Carlo sample z drawn
from g4(z|x) (see Fig. XVIL.C.2). When py(x|z) is ap-
proximated by a neural network, this can be calculated
using backpropagation with the reconstruction error as
the objective function.

On the other hand, calculating the gradient with re-
spect to the parameters ¢ is more complicated since ¢
also appears in the expectation value Eg, (,|x). Ideally, we
would like to also use backpropagation to calculate this
as well. It turns out that this can be done by a simple
change of variables that often goes under the name the
“reparameterization trick” ( , ;

, ). The basic idea is to change vari-
ables so that ¢ no longer appears in the distribution we
are taking an expectation value with respect to. To do
this, we express the random variable z ~ g4 (z|x) as some
differentiable and invertible transformation of another
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FIG. 73 Schematic explaining the computational flow of VAEs. Figure based on Kingma Ph.D. dissertation Chapter 2. (I<ingma

et (/],, 2()17).

random variable e:

zZ = 9(67 (,25, X)7 (224)

where the distribution of € is independent of x and ¢.
Then, we can replace expectation values over g4(z|x) by
expectation values over pe

Eqy(zpo [/ (2)] = Ep.[f(2)].

Evaluating the derivative then becomes quite straight for-
ward since

(225)

V¢E¢J¢(z|x) [f(Z)] ~ Eps [V¢f(z)}

Of course, when we do this we still need to be able to
calculate the Jacobian of this change of variables

(226)

dy(x, ¢) = Det % (227)
since
log g4 (z[x) = log p(€) — log dy(x, ¢). (228)

Since we can calculate gradients, we can now use back-
propagation on the full the ELBO objective function (we
return to this below when we discuss concrete architec-
tures and implementations of VAE).

One of the problems that commonly occurs when train-
ing VAEs by performing a stochastic optimization of the
ELBO (variational free energy) is that it often gets stuck
in undesirable local minima, especially at the beginning
of the training procedure (Bowman et al., 2015; Kingma
et al., 2017; Sonderby et al., 2016). The underlying rea-
son for this is that the ELBO objective function can be
improved in two qualitatively different ways correspond-
ing to each of the two terms in Eq. (221): by minimizing
the reconstruction error or by making the posterior dis-
tribution g4 (z|x) to be close to p(z) (Of course, the goal

is to do both!). For complex datasets, at the beginning of
training when the reconstruction error is extremely poor,
the model often quickly learns to make ¢(z|x) ~ p(z) and
gets stuck in this local minimum. For this reason, in prac-
tice it is found that it makes sense to modify the ELBO
objective to use an optimization schedule of the form
Eqy(a1x) [log o (%, 2)] — BDk1(q4(zx)Ip(z))  (229)
where [ is slowly annealed from 0 to 1 (Bowman et al.,
2015; Senderby et al., 2016). An alternative regulariza-
tion is the “method of free bits”: modifying the objective
function of ELBO to ensure that on average g4(z|x) has
at least A natural units of information about p(z) (see
Kingma Ph.D thesis (Kingma et al., 2017) for details) .
These observations hints that at the more general con-
nection between VAEs and information theory that we
turn to in the next section.

3. Connection to the information bottleneck

There is a fundamental connection between the vari-
ational autoencoder objective and the information bot-
tleneck (IB) for lossy compression (Tishby et al., 2000).
The information bottleneck imagines we have input data
x that is correlated with another variable of interest, vy,
and we are given access to the joint distribution, p(z,y).
Our task is to take = as input and compress it in such a
way as to retain as much information as possible about
the relevance variable, y. To do this, Tishby et al. pro-
pose to maximize the objective function

Lip =1(y;2) — Bl(z;2) (230)
over a stochastic encoding distribution ¢(z|z), where z is
our compression of the input, and [ is a tradeoff param-
eter that sets the relative preference of compression and



accuracy, and I (y; z) is the mutual information between y
and z. Note that we choose a slightly different but equiv-
alent form of the objective relative to Tishby et al.. This
objective is only known to have a closed-form solution
when z and y are jointly Gaussian (

Otherwise, the optimization can be performed through a
Blahut-Arimoto type iterative update scheme ( ,

: , ). However, this is only guaranteed to
converge to a local optimum. A significant difficulty in
implementing IB is that it requires knowledge of the joint
distribution p(z,y) and that we must be able to compute
the mutual information, a notoriously difficult quantity
to estimate from samples. Hence, IB has in recent years
been utilized less than it might otherwise.

To address these problems, variational approximations
to the IB objective function have been developed (

, ; , ). These approximations,
when apphed to a particular choice of p(z,y) give the
same objective as the variational autoencoder. Here
we follow the exposition from Alemi et al.( ,

). To see this, consider a dataset of N points, z;.
We set = ¢ and y = x; in the IB objective, similar
to ( ) ; ). We
choose p(i) = 1/N and p(z|i) = §(z — x;). That is, we
would like to find a compression of the data that preserves
information about data point location while reducing in-
formation about data point identity.

Imagine that we are unable to directly work with the
decoder p(z|z). The first approximation replaces the ex-
act decoder inside the logarithm with an approximation,
q(z|z). Due to the positivity of KL-divergence, namely,

Drer(p(x]2)llq(x|2)) = 0
= /dxp(x\z) log p(z|z) > /da:p(x|z)logq(x|z),

(231)
we have
Tz
I(z;2) = / dwdz p(x)p(2)z) log (pé@i)))
> /dxdzp(w)p(2|:v) log q(x[2) — Hp()
/ dudz p(z)p(=|z) log ¢(x]2), (232)
where H,(z) > 0 is the Shannon entropy of z. This

quantity can be estimated from data samples (i, z;) af-
ter drawing from p(z|i) = p(z|x;). Similarly, we can
replace the prior distribution of the encoding, p(z) =
[ dxp(x)q(z]z) which is typically intractable, with a
tractable g(z) to get

) 1 z|x;
169 < g 3 [ dzplelai) o pg('z)>

Putting these two bounds Eqgs. (232)and (233) together
and note that x = ¢ and y = x;, we get an upper bound

(233)
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FIG. 74 Computational graph for a VAE with Gaussian hid-
den units (i.e. p(z) are standard normal variables A/(0, 1) and
Gaussian variational encoder whose posterior takes the form

qs(2/x) = N (u(x), 0% (x)).

for the IB objective that takes the same form as the VAE
objective Eq. (229) we saw earlier:

Lip = I(z;2) — BI(y; 2)
< / dzp(0) Epmlloga(zlz)]  (234)
Ry X ZDKL dala(). (235)

Note that in Eq. (234) we have a conditional distribution
of x given z but not their joint distribution inside the
expectation, which was the case in Eq. (229). This is
due to that we dropped the entropy term pertaining to
x, which is irrelevant in the optimization procedure. In
fact, this objective has been explored and is called a (-
VAE ( , ). It’s interesting to note that in
the case of IB, the variational approximations are with
respect to the decoder and prior, whereas in the VAE,
the variational approximations are with respect to the
encoder.

D. VAE with Gaussian latent variables and Gaussian encoder

Our discussion of VAEs thus far has been quite ab-
stract. In this section, we discuss one of the most widely
employed VAE architectures: a VAE with factorized
Gaussian posteriors, gy (z|x) = N(z, p(x), diag(o?(x)))
and standard normal latent variables p(z) = N(0,1I).



The training and implementation simplifies greatly
here because we can analytically workout the term

D 1.(qe(2[x)|p(2)).

1. Implementing the Gaussian VAE

We now show how we can combine analytic expressions
for the KL-divergence with backpropagation to efficiently
implement a Gaussian VAE. We start by first deriving an-
alytic expressions for Dk (q4(2z|x)|p(2z)) in terms of the
means p(x) and variances o?(x). This is just a simple ex-
ercise in Gaussian integrals. For notational convenience,
we drop the x-dependence of the means pu(x), variances
o?(x), and gy (x). A straight-forward calculation gives

/ dagy(z) log p(z) = / N (2, (), ding(o(x))) log A'(0, T)

J

J 1 9 9
= —5log2m — 5 ;(uj +logo?), (236)
where J is the dimension of the latent space. An almost

identical calculation yields

J

J 1 )
— 5 log2m— o ;(Haj). (237)

/ dzqy(z)log q4(z) =

Combining these equations gives

J
Zl+10go (x) — ,u?(x)—

Jj=1

l\.')\)—l

—Dxr1.(g4(2[%)|p(2)
(238)

This analytic expression allows us to implement the
Gaussian VAE in a straight forward way using neural net-
works. The computational graph for this implementation
is shown in Fig. 74. Notice that since the parameters are
all compositions of differentiable functions, we can use
standard backpropagation algorithms to train VAEs.

2. VAEs for the MNIST dataset

In Notebook 19, we have implemented a VAE using
Keras and trained it using the MNIST dataset. The ba-
sic architecture is the one describe above. All figures
were generated with a VAE that has a latent space of
dimension 2. The architecture of both the encoder and
decoder is a Multi-layer Perceptron (MLPs) — neural net-
works with a single hidden layer. For this example, we
take the dimension of the hidden layer for both neural
networks to be 256. We trained the VAE using the RMS-
prop optimizer for 50 epochs.

We can visualize the embedding in the latent space
by plotting z of the test set and coloring the points by
digit identity [0-9] (see Figure XVIL.D.2). Notice that
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FIG. 75 Embedding of MNIST dataset into a two-
dimensional latent space using a VAE with two latent dimen-
sions (see Notebook 19 and main text for details.) Data points
are colored by there identity [0-9].

in general, digits that are similar end up being closer to
each other in the latent space. However, this is not alway
the case (see bright green points for example). This is a
general feature of these low-dimensional embeddings and
we saw a similar phenomenon when we examined t-SNE
in Section XII.

The real advantage that VAEs offer over embeddings

2 x))such as t-SNE is that they are generative models. Given

a set of examples, we can generate new examples — or fan-
tasy particles as they are commonly called in ML — by
sampling the latent space z and then using the decoder to
map these latent variables to new examples. The results
of this procedure are shown in Figure XVIL.D.2. In the
top figure, we sample the latent space uniformly in a 5x5
grid. Notice that this results in extremely similar exam-
ples through much of the latent space. The underlying
reason for this is that uniform sampling does not respect
the underlying Gausssian structure of the latent space z.
In the bottom figure, we perform a uniform sampling on
the probability p(z) and mapped this back to the latent
space using the inverse Cumulative Distribution Func-
tion (CDF) of the Gaussian. We see that the diversity of
the generated examples is much higher for this sampling
procedure.

This example is indicative of a more general problem:
once we have learned a generative model how should we
sample latent spaces (White, 2016). This is especially
important in high-dimensional spaces where direct visu-
alization is not possible. Often certain directions in the
latent space can have different meanings. A particularly
striking visual illustration is the “smile vector” that in-
terpolates between smiling and frowning faces (White,
2016).


https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
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FIG. 76 (Top) Fantasy particle generated by uniform sam-
pling of the latent space z. (Bottom) Fantasy particles gen-
erated by uniform sampling of probability p(z) mapped to
latent space using the inverse Cumulative Distribution Func-
tion (CDF) of the Gaussian.

3. VAEs for the 2D Ising model

In Notebook 20, we used an almost identical architec-
ture (though coded in a slightly different way) to train
a VAE on the Ising dataset discussed through out the
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FIG. 77 (Top) Embedding of the Ising dataset into a two-
dimensional latent space using a VAE with two latent dimen-
sions (see Notebook 20 and main text for details.) Data points
are colored by temperature sample was drawn at. (Bottom)
Correlation between the latent dimensions and the magneti-
zation for each sample. Notice the first principle component
corresponds to the magnetization.

review. The only differences between the two VAEs are
that the visible layer of the Ising VAE now has 1600 units
(our samples are 40 x 40 instead of the 28 x 28 MNIST
images) and we have changed the standard deviation of
the Gaussian of the latent variables p(z) from ¢ =1 to
o =0.2.

We once again visualize the embedding learned by
the VAE by plotting z and coloring the points by the
temperature at which the sample was drawn (see Fig-
ure XVIL.D.3 top). Notice that the latent space has
learned a lot of the physics of the Ising model. For ex-
ample, the first VAE dimension is just the magnetization
(Fig. XVILD.3 bottom). This is not surprising since we
saw in Section XII that the first principal component of
a PCA also corresponded to the magnetization.

We now ask how well the VAE can generate new exam-
ples (see Fig. 78). We see that the examples look quite
different from real Ising configurations — they lack the
large scale patchiness seen in the critical region. They
mostly turn out to be unstructured speckles that reflect
only the average probability that a pixel is on in a region.
This is not surprising since our VAE has no spatial struc-
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FIG. 78 Fantasy particles for the Ising model generated by
uniform sampling of probability p(z) mapped to latent space
using the inverse Cumulative Distribution Function (CDF) of
the Gaussian.

ture, has only two latent dimensions, and the cost func-
tion does not know about “correlations between spins”

there is very little information about correlations in
the binary cross-entropy which we use to measure recon-
struction errors. The reader is encouraged to play with
the corresponding notebook and generate examples as we
change the latent dimension and/or choose modified ar-
chitectures such as decoders based on CNNs instead of
MLPs.

This example also shows how much easier it is to dis-
criminate between labeled data than it is to learn how
generate new examples from an unlabeled dataset. This
is true in all spheres of machine learning. This is also
one of the reasons that generative models are one the
cutting edge areas of modern Machine Learning research
and there are likely to be a barrage of new techniques for
generative modeling in the next few years.

XVIIl. OUTLOOK

In this review, we have strived to give the reader the
intellectual and practical tools to engage with Machine
Learning (ML), data science, and parts of modern statis-
tics. We have tried to emphasize that ML differs from
ordinary statistics in that the goal is to predict rather
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than to fit. For this reason, all the techniques discussed
here have to navigate important tensions that lie at the
heart of ML. The most prominent instantiation of these
inherent tradeoffs is the bias-variance tradeoff, which is
perhaps the only universal principle in ML. Identifying
how these tradeoffs manifest in a particular algorithm is
the key to constructing and training powerful ML meth-
ods.

The immense progress in computing power and the
corresponding availability of large datasets ensure that
ML will be an important part of the physics toolkit. In
the future, we expect ML to be a core competency of
physicists much like linear algebra, group theory, and
differential equations. We hope that this review will play
some small part toward this aspirational goal.

We wrote this review to provide a relatively concise
introduction to ML using ideas and language familiar
to physicists (though the review ended up being almost
twice the planned length). In writing the review, we have
tried to accomplish two somewhat disparate tasks. First,
we have tried to highlight more abstract and theoretical
considerations to show the unity of ML and statistical
learning. Many ML techniques can be understood by
starting with some key concepts from statistical learning
(MLE, bias-variance tradeoff, regularization) and com-
bining them with core concepts familiar from statisti-
cal physics (Monte-Carlo, gradient descent, variational
methods and MFT). Despite the high-level similarities
between all the methods presented here, the way that
these concepts manifest in any given technique is often
quite clever and understanding these “hacks” is the key to
understanding why some ML techniques turn out to be
so powerful and others not so much. ML, in this sense, is
as much an art as a science. Second, we have tried to give
the reader the practical know-how to start using the tools
and concepts from ML for immediately solving problems.
We believe the accompanying python notebooks and the
emphasis on coding in python have accomplished this
task.

A. Research at the intersection of physics and ML

We hope the review catalyzes more research at the
intersection of physics and machine learning. Here we
briefly highlight a few promising research directions. We
note that this list is far from comprehensive.

e Applying ML to solve physics problems. One
theme that has reoccurred through out the review
is that ML is most effective in settings with well de-
fined objectives and lots of data. For this reason,
we expect ML to become a core competency of data
rich fields such as high-energy experiments and as-
tronomy. However, ML may also prove to be use-
ful for helping further our physical understanding
through data-driven approach to other branches of
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physics that may not be immediately obvious, such
as quantum physics ( , ).
For example, recent works have used ideas from ML
to investigate disparate topics such as disordered
materials and glasses ( , ), electronic
structure calculations ( , ), design-
ing and analyzing quantum materials by integrat-
ing ML with existing techniques such as Dynami-
cal Mean Field Theory (DMFT) ( ,

), and even experimental learning of quantum
states by using ML to aid in quantum tomogra-

phy ( ) )

Machine Learning on quantum computers.
Another interesting area of research that is likely
grow is asking if and how quantum comput-
ers can help improve state-of-the art ML algo-
rithms ( , ;

) ? ) 9 )

) ) i i

) ? ) ) )

Concrete examples that seek to extend some of
the basic ideas and methods we introduced in
this review to the quantum computing realm in-
clude: algorithms for quantum-assisted gradient
descent ( , ;

, ), classification ( ,

), and Ridge regression ( , ). Inter-
est in this field will undoubtedly grow once reliable
quantum computers become available (see also this
recent review ( , )).

Monte-Carlo Methods. An interesting area that
has seen a renewed interest with Bayesian modeling
is the development of new Monte-Carlo methods for
sampling complex probability distributions. Some
of the workhorses of modern Machine Learning —
Annealed Importance Sampling (AIS) ( , )
and Hamiltonian or Hybrid Monte-Carlo (HMC)
( ) — are intimately related to
physics. As pomted out by Radford Neal, AIS is
just the Jarzynski inequality ( , ) as
a Monte-Carlo method and HMC was developed
by physicists and exploits Hamiltonian dynamics
to improve proposal distributions.

Statistical physics style theory of Deep
Learning. Many techniques in ML have origins
in statistical physics. Yet, a physics-style theory
of Deep Learning remains elusive. A key question
is to ask when and why these models manage to
generalize well. Physicists are only beginning to
ask these questions ( , ;
) 7 b )

, ). But right now, it is fair to say
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that the insights remain scattered and a cohesive
theoretical understanding is lacking.

¢ Biological physics and ML. Biological physics
is generating ever more datasets in fields ranging
from neuroscience to evolution and immunology. It
is likely that ML will be an important part of the
biophysics toolkit in the future. Many of the au-
thors of this review were inspired to engage with
ML for this reason.

e Using ideas from physics to develop new
ML algorithms. Many of the core ideas of ML
from Monte-Carlo techniques to variational meth-
ods have their origin in physics. There has been a
tremendous amount of recent work developing tools
to understand physical systems that may be of po-
tential use to ML. For example, in quantum con-
densed matter techniques such as DMRG, MERA,
etc. have enriched both our practical and con-
ceptual understandings (

; ; , ). It will be 1nter—
estlng to ﬁgure how and if these numerical methods
can be translated from a physics to a ML setting.

There are tantalizing hints that this is likely to be

a fruitful direction ( , ; ,

; ; )-

B. Topics not covered in review

Despite the considerable length of the review, we have
had to make many omissions for the sake of brevity. It
is our hope and belief that after reading this review the
reader will have the conceptual and practical knowledge
to quickly learn about these other topics. Among the
most prominent topics missing from this review are:

e Temporal/Sequential Data. We have not cov-
ered techniques for dealing with temporal or se-
quential data. Here, too there are many connec-
tions with statistical physics. A powerful class of
models for sequential data called Hidden Markov
Models ( , ) that utilize dynamical
programming techniques have natural statistical
physics interpretations in terms of transfer matri-
ces (see ( , ) for explicit exam-
ple of this). Recently, Recurrent Neural Networks
(RNNs) have become an important and powerful
tool for dealing with sequence data (

, ). RNNs generalize many of the ideas
discussed in the DNN section to deal with temporal
data.

¢ Reinforcement Learning. Many of the most ex-
citing developments in the last five years have come
from combining ideas from reinforcement learning



with deep neural networks ( , ;

, ). RL traces its origins to be-
haviourist psychology, when it was conceived as
a way to explain and study reward-based deci-
sion making. RL was put on solid mathematical
grounds in the 50’s by Richard Bellman and col-
laborators, and has by now become an inseparable
part of robotics and artificial intelligence. RL is a
field of Machine Learning, in which an agent learns
how to master performing a specific task through
an interaction with its environment. Depending on
the reward it receives, the agent chooses to take an
action affecting the environment, which in turn de-
termines the value of the next received reward, and
so on. The long-term goal of the agent is to max-
imise the cumulative expected return, thus improv-
ing its performance in the longer run. Shadowed by
more traditional optimal control algorithms, Rein-
forcement Learning has only recently taken off in
physics ( ; ;

) ) ? i )'
Of particular interest are biophysics inspired works
that seek to use RL to understand navigation and
sensing in turbulent environments ( ,

’ )

e Support Vector Machines (SVMs) and Ker-
nel Methods. SVMs and kernel methods are a
powerful set of techniques that work well when the
amount of training data is limited ( , ).
The mathematics and theory of SVM are very dif-
ferent from statistical physics and for this reason
we chose not to include them here. However, SVMs
and kernel methods have played an extremely im-
portant role in ML and are worth understanding.

C. Rebranding Machine Learning as “Artificial Intelligence”

The immense scientific progress in ML has also been
accompanied by a massive public relations effort centered
around Silicon Valley. Starting with the success of Ima-
geNet (the most prominent early use of GPUs for train-
ing large models) and the widespread adoption of Deep
Learning based techniques by the Silicon Valley compa-
nies, there has been a deliberate move to rebrand modern
ML as “artificial intelligence” or Al (see graphs in ( ,

).

Al, by design, is an ambiguous term that mixes aspi-

rations with reality. It also conflates the statistical ideas
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that form the basis of modern ML with the more com-
monplace notions about what humans and behavioral sci-
entists mean by intelligence (see ( , ) for
an enlightening and important modern discussion of this
distinction from a quantitative cognitive science point of
view as well as ( , ) for a surprisingly relevant
philosophy-based critique from 1965).

Almost all the techniques discussed here rely on op-
timizing a pre-specified objective function on a given
dataset. Yet, we know that for large, complex models
changing the data distribution or the goal can lead to an
immediate degradation of performance. Deep networks
have poor generalizations to even a slightly different con-
text (the infamous Validation-Test set mismatch). This
inability to abstract and generalize is a common criticism
lobbied against branding modern ML techniques as Al
( , ). For all these reasons, we have chosen
to use the term Machine Learning rather than artificial
intelligence through out the review.

This is far from the first time we have seen the use of

the term artificial intelligence and the grandiose promises
that it implies. In fact, the early 1950’s and 1960’s as
well as the early 1980’s saw similar AT bubbles (see this
interesting summary by Luke Muehlhauser for Open Phi-
lanthropy ( , )). These Al bubbles have
been followed by what have been dubbed “AI Winters”
( , 1985).
The “Singularity” may not be coming but the advances
in computing and the availability of large data sets likely
ensure that the kind of statistical learning frameworks
discussed are here to stay. Rather than a general arti-
ficial intelligence, the kind of techniques presented here
seem to be best suited for three important tasks: (a) au-
tomating prediction from lots of labeled examples in a
narrowly-defined setting (b) learning how to parameter-
ize and capture the correlations of complex probability
distributions, and (c) finding policies for tasks with well-
defined goals and clear rules. We hope that this review
has given the reader enough conceptual tools to start
forming their own opinions about reality and hype when
it comes to modern ML research.

D. Social Implications of Machine Learning

The last decade has also seen a systematic increase in
the use and deployment of Machine Learning techniques
into new areas of life and society. Some of the readers of
this review may currently be (or eventually be) employed
in industrial settings that seek to harness ML for practi-
cal purposes. However, caution is in order when applying
ML. Without foresight and accountability, the scale and
scope of modern ML algorithms can lead to large scale
unaccountable and undemocratic outcomes that can re-
inforce or even worsen existing inequality and inequities.
Mathematician and data scientist turned social commen-



tator Cathy O’Neil has dubbed the indiscriminate use of
these Big Data techniques “Weapons of Math Destruc-
tion” ( , ).

When ML is used in a social context, abstract statis-
tical relationships have real social consequences. False
positives can mean the difference between life and death
(for example in the context of “signature drone strikes”)
( , ). ML algorithms, like all techniques, have
important limitations and should be employed with great
caution. It is our hope that ML practitioners keep this
in mind when working in social settings.

All algorithms involve inherent tradeoffs in fairness, a
point formalized by computer scientist Jon Kleinberg and
collaborators in a very interesting recent paper (

, ). It is far from clear how to make al-
gorithms fair for all people involved. This is even more
true with methods like Deep Learning that are hard to
interpret. All ML algorithms have implicit assumptions
and choices reflected in the datasets we use to the kind
of functions we choose to optimize. It is important to
remember that there is no ¢ view from nowhere” ( ,

; , ) — all ML algorithms reflect a point of
view and a set of assumptions about the world we live
in. For this reason, we hope that ML practitioners and
data scientists will take the time to consider the social
consequences of their actions. For example, developing a
Hippocratic Oath for data scientists is now being consid-
ered ( , ). Doing no harm seems like a good
start for making sure that we harness ML for the benefit
of all members of society.
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Appendix A: An overview of the datasets used in review

1. Ising dataset

The Ising dataset we use throughout the review was
generated using the standard Metropolis algorithm to
generate a Markov Chain. The full dataset consist of
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16 x 10000 samples of 40 x 40 spin configurations (i.e.
the design matrix has 160000 samples and 1600 features)
drawn at temperatures 0.25,0.5,---4.0. The samples
are drawn for the Boltzmann distribution of the two-
dimensional ferromagnetic Ising model on a 40 x40 square
lattice with periodic boundary conditions.

2. SUSY dataset

The SUSY dataset was generated by Baldi et al (

, ) to explore the efficacy of using Deep Learning
for classifying collision events. The dataset is download-
able from the UCI Machine Learning Repository, a won-
derful resource for interesting datasets. Here we quote
directly from the paper:

The data has been produced using Monte
Carlo simulations and contains events with
two leptons (electrons or muons). In high
energy physics experiments, such as the AT-
LAS and CMS detectors at the CERN LHC,
one major hope is the discovery of new par-
ticles. To accomplish this task, physicists at-
tempt to sift through data events and classify
them as either a signal of some new physics
process or particle, or instead a background
event from understood Standard Model pro-
cesses. Unfortunately we will never know for
sure what underlying physical process hap-
pened (the only information to which we have
access are the final state particles). How-
ever, we can attempt to define parts of phase
space that will have a high percentage of sig-
nal events. Typically this is done by using a
series of simple requirements on the kinematic
quantities of the final state particles, for ex-
ample having one or more leptons with large
amounts of momentum that is transverse to
the beam line ( pT ). Here instead we will
use logistic regression in order to attempt to
find out the relative probability that an event
is from a signal or a background event and
rather than using the kinematic quantities of
final state particles directly we will use the
output of our logistic regression to define a
part of phase space that is enriched in sig-
nal events. The dataset we are using has the
value of 18 kinematic variables ("features") of
the event. The first 8 features are direct mea-
surements of final state particles, in this case
the pT , pseudo-rapidity, and azimuthal angle
of two leptons in the event and the amount
of missing transverse momentum (MET) to-
gether with its azimuthal angle. The last ten
features are functions of the first 8 features;


https://archive.ics.uci.edu/ml/datasets/SUSY

these are high-level features derived by physi-
cists to help discriminate between the two
classes. You can think of them as physicists
attempt to use non-linear functions to classify
signal and background events and they have
been developed with a lot of deep thinking
on the part of physicist. There is however,
an interest in using deep learning methods to
obviate the need for physicists to manually
develop such features. Benchmark results us-
ing Bayesian Decision Trees from a standard
physics package and 5-layer neural networks
and the dropout algorithm are presented in
the original paper to compare the ability of
deep-learning to bypass the need of using such
high level features. We will also explore this
topic in later notebooks. The dataset con-
sists of 5 million events, the first 4,500,000 of
which we will use for training the model and
the last 500,000 examples will be used as a
test set.

3. MNIST Dataset

The MNIST dataset is one of the simplest and most
widely used Machine Learning Datasets. The MNIST
dataset consists of hand-written images of numerical
characters 0—9 and consists of a training set of 60,000 ex-
amples, and a test set of 10,000 examples ( ,

). Information about the MNIST database and its
historical importance can be found at Yann Lecun’s wed-
site: http://yann.lecun.com/exdb/mnist/. A brief
description from the website:

The original black and white (bilevel) images
from NIST were size normalized to fit in a
20x20 pixel box while preserving their aspect
ratio. The resulting images contain grey lev-
els as a result of the anti-aliasing technique
used by the normalization algorithm. the im-
ages were centered in a 28x28 image by com-
puting the center of mass of the pixels, and
translating the image so as to position this
point at the center of the 28x28 field.

The MNIST is often included by default in many modern
ML packages.
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