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1. SUPPLEMENTAL RESULTS 

1.1. Relationship of income and subjective social-standing to primary measure of 
Socioeconomic Status (SES), and additional analyses of age-cohort defined SES 

For a subset of participants (n=168), additional measures related to SES were available: 

self-reported income (an objective measure of SES) and social standing (a subjective measure 

of SES; 1). We examined these measures to determine whether they are related to our primary 

measure of SES (defined from education and occupational socioeconomic characteristics). The 

weighted household income of the participants was quantified by identifying the midpoint of a 

participant’s self-report range of household income (the highest earning range [>$500,000] was 

scaled to 25% above the lower bound [$625,000]), weighted by the square root of the total 

number of household members, and taking the cube root of the weighted income to normalize 

the income distribution (2-4).  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑃𝑒𝑟	𝐶𝑎𝑝𝑖𝑡𝑎	𝐼𝑛𝑐𝑜𝑚𝑒 = 	
𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑	𝐼𝑛𝑐𝑜𝑚𝑒
𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑	𝑀𝑒𝑚𝑏𝑒𝑟𝑠:

;
 

Using the MacArthur’s Scale of Subjective Social Standing (1), we measured a 

participant’s subjective SES by presenting him or her with a drawing of a ladder that included 10 

rungs, and explained that each rung (level) represents people with different levels of education, 

income and occupation status. The participants indicated on which rung they believed they 

stood relative to other people in the United States. A lower score on the MacArthur’s scale 

(higher rung) reflects higher subjective SES.  

In the subset of participants with both of these measures, their SES score was 

correlated with both higher income (r(166)=0.32, p<.001) as well as higher subjective SES 

(r(166)=-0.29, p<.001; smaller values in subjective SES correspond to higher subjective SES). 

There is a possibility that SES relates to income and subjective SES differently across 

age groups. However, no significant interactions were observed between SES and age group 

on either income (F(3,160)=0.89, p=.445, 𝜂=>=.02) or subjective SES (F(3,160)=0.93, p=.429, 

𝜂=>=.02). While the relationships between SES and income or subjective SES do not 

significantly differ across age groups in the present sample, examining the raw correlation 

values between income and the main SES measure within each age group revealed that the 

correlation was strongest in YA and ML (rs>0.43, ps<.032), and weaker in ME and OA (rs<0.31, 

ps>.120). Subjective SES showed significant negative correlations with the main SES measure 

in YA, ME and OA (rs<-0.30, ps<.034), but no association in ME (r(25)=-0.04, p=.835). 



SES moderates brain network organization in adults – SI Appendix 
 

 3 

Given the minor variation in how SES relates to income and subjective-SES across age 

group, we tested whether computing the SES score within each respective age group would 

result in any qualitative differences to the main finding (i.e., the PCA used to extract a factor 

from education and socioeconomic index were completed within each age group). The resulting 

age group-specific SES score was strongly correlated with the original SES score (r(303)=0.99, 

p<.001). The primary findings regarding the interaction between SES and age on system 

segregation (b=-0.0003, t(299)=-2.01, p=.046), and SES by age group on both system 

segregation (F(3,295)=3.13, p=.026, 𝜂=>=.03) and cortical thickness (F(3,295)=2.66, p=.049, 

𝜂=>=.03) remained significant when using the age group-specific SES scores. 

1.2. SES-brain relations in different age segments 
The relationship between SES and both brain measures in middle-age segments (see 

Fig. 2 of main manuscript) parallels previous findings in the literature reporting a positive 

relationship between SES and cortical thickness (whole-brain and regional) in middle-age 

adulthood (middle-age adults range: 35-64y (5) and 30-54y (6)). While the age grouping used in 

the present study was driven by methodological decisions regarding functional network 

identification and analysis (see main text), we examined the SES-brain relationships across the 

middle-age range (35-64y). SES significantly predicted brain system segregation (b=0.20, 

t(125)=2.24, p=.027) and mean cortical thickness (b=0.19, t(125)=2.16, p=.033), after 

accounting for head motion.  

In contrast to middle-age adults, younger-age adults did not exhibit significant 

relationships with either system segregation or mean cortical thickness (ts< 1.85, ps >.071). In 

the older group, a marginally significant negative relationship between SES and system 

segregation was noted (b=-0.17, t(129)=-1.98, p=.0501). The relationship between SES and 

mean cortical thickness was non-significant in older adults (b=-0.12, t(129)=-1.32, p=.188).  

1.3. Interaction of age group with SES components: education attainment and 
occupational socioeconomic characteristics 

A participant’s SES score was composed from their education years and occupational 

socioeconomic index. To determine whether the individual components forming the SES 

construct interacted with age differently in relation to the brain’s neuroanatomy and functional 

network organization, each measure was independently examined in relation to age and the 

brain. GLMs were constructed to examine the effect of education or occupational 

socioeconomic index, age group, and their interaction on brain system segregation and mean 
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cortical thickness (ICV-adjusted); in-scanner head motion (mean FD) was entered as a 

covariate. The main effect of occupational socioeconomic index and education years did not 

significantly predict either brain variable, consistent with our primary observations that included 

the composite SES measure. However, the interaction between occupational socioeconomic 

index and age group significantly predicted both brain system segregation (F(3,295)=2.81, 

p=.040, 𝜂=>=.03) and cortical thickness (F(3,295)=2.64, p=.050, 𝜂=>=.03). Further, these 

interaction effects remained significant when controlling for education (brain system 

segregation: F(3,294)=2.78, p=.041, 𝜂=>=.03; cortical thickness: F(3,294)=2.69, p=.047, 𝜂=>=.03). 

Conversely, an interaction between education years and age group significantly predicted brain 

system segregation (F(3,295)=2.68, p=.047, 𝜂=>=.03), but not cortical thickness (F(3,295)=1.69, 

p=.169, 𝜂=>=.02); and when controlling for occupational socioeconomic index, the interaction 

remained significant for brain system segregation (F(3,294)=2.66, p=.048, 𝜂=>=.03). While the 

two independent variables were correlated (education years and occupational socioeconomic 

index: r(302)=0.49, p<.001), these observations suggest that the two variables may exhibit 

unique relationships with brain function and anatomy.  

1.4. SES by age (continuous) interaction on system segregation while controlling 
for additional covariates  

A significant interaction between SES and continuous age was observed in brain system 

segregation. This interaction remained significant when separately controlling for physical health 

(F(1,292)=4.00, p=.047, 𝜂=>=.01), episodic memory (F(1,298)=4.07, p=.045, 𝜂=>=.01), and fluid 

processing (F(1,298)=4.05, p=.045, 𝜂=>=.01); the interaction attenuated to a marginal effect 

when controlling for participant demographics (F(1,288)=2.84, p=.093, 𝜂=>=.03) and mental 

health (F(1,296)=-1.95, p=.052, 𝜂=>=.01). 

1.5. Further considerations of the relationship between Childhood-SES and brain 
measures 

As reported in the main manuscript, in models controlling for age group, the childhood-

SES to brain relation was not significant. Given the previously reported relationship between an 

individual’s childhood-SES and features of their adult brain (e.g., 7), we explored the simple 

relationship between childhood-SES and both brain measures while only controlling for head 

motion in the sub-sample of participants with childhood-SES data (n=168). In statistical models 

that did not control for age group, childhood-SES was significantly associated with cortical 

thickness (F(6,160)=2.70, p=.016, 𝜂=>=.09), while exhibiting a marginal relationship with system 
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segregation (F(6,160)=2.11, p=.055, 𝜂=>=.07). However, given the significant association 

between childhood-SES and age group (see main text), where older adults tended to have 

parents with lower education (see Table S1), the associations between childhood-SES and the 

two brain measures in our present sample are confounded with age. 

 
Age group N Education 

Years (SD) 
Occupational 

Socioeconomic Index (SD) 
Childhood-SES (% of 

participants) 

Younger 
Adults 

(20-34y) 
25 16.80 

(2.40) 
49.09 

(14.48) 

0% Primary School 
20% High School 

16% Associate’s Degree 
36% Bachelor’s Degree 
28% Master’s Degree 

0% PhD 
0% MD 

Middle-Early 
Adults 

(35-49y) 
26 16.48 

(2.37) 
49.82 

(13.60) 

0% Primary School 
35% High School 

4% Associate’s Degree 
27% Bachelor’s Degree 
27% Master’s Degree 

4% PhD 
4% MD 

Middle-Late 
Adults 

(50-64y) 
50 15.75 

(2.09) 
48.92 

(11.70) 

8% Primary School 
38% High School 

16% Associate’s Degree 
26% Bachelor’s Degree 

4% Master’s Degree 
4% PhD 
4% MD 

Older Adults 
(65-89y) 67 15.57 

(2.47) 
47.98 

(10.37) 

24% Primary School 
42% High School 

10% Associate’s Degree 
16% Bachelor’s Degree 

7% Master’s Degree 
0% PhD 
0% MD 

 
Table S1 – Childhood-SES of sub-sample (n=168). Childhood-SES = highest degree 
completed by either parent of the participant. 
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1.6. System-specific differences in functional network organization and regional 
differences in brain anatomy 

The central analysis of the main report focuses on global measures of functional network 

organization (mean brain system segregation) and brain anatomy (mean cortical thickness). 

Additional follow-up analyses were conducted to further understand the more specific brain 

differences. 

SES-related differences in the segregation of specific types of brain systems 

We examined the system segregation of specific types of brain systems (see 8). 

Functional brain systems were categorized into two distinct systems types: (i) sensory-

motor systems, which primarily receive and process sensory and motor signals, and (ii) 

association systems, which are typically involved in directing and integrating information 

across a variety of tasks (9, 10). System segregation can then be calculated to quantify 

the degree to which different types of systems are segregated from one another (e.g., 

the segregation of sensory-motor systems from association systems; see 

Supplemental Methods below for details on calculating system segregation for specific 

systems). These analyses revealed a significant SES by age group interaction on the 

segregation of association systems from all other brain systems (F(3,295)=2.76, p=.042, 

𝜂=>=.03) and on the segregation of association systems from each other (F(3,295)=3.05, 

p=.029, 𝜂=>=.03). Segregations of sensory-motor systems were not significantly 

predicted by this interaction (Fs<1.12, ps>.341). These observations parallel the finding 

in regional thickness differences (described below), where the strongest SES-

differences were observed in association regions of the brain. 

SES-related differences in regional anatomy across age groups 
Prior work has revealed SES related anatomical differences in specific regions of the 

brain implicated in executive control (e.g., 11, 12), long-term episodic memory (e.g., 13, 14), 

and verbal ability (e.g., 15) (for review see 16). These observations are consistent with the types 

of SES-related cognitive differences reported in children (e.g., 17, 18) and adults (e.g., 19, 20). 

To explore our primary observations further, we conducted a vertex-wise analysis of 

SES-thickness relations within each age group across the cortical surface (Fig. S1). As this is 

an exploratory analysis that is meant to supplement and inform the primary finding (focused on 

mean cortical thickness), relationships are reported using a conventionally lenient threshold 

(p<.01, uncorrected). As predicted from the observations of mean cortical thickness, the most 
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prominent positive relationships between SES and gray matter thickness are observable in the 

earlier-middle age groups (ME): greater cortical thickness was predicted by increasing SES in 

regions that included the anterior prefrontal cortex, middle-frontal gyrus, ventral anterior 

cingulate cortex (ACC), posterior cingulate cortex and precuneus (PreCu; Fig. S1). These brain 

regions are members of various association systems, which are responsible for processes 

linked to memory, attention and control (9, 10). A number of these regions are also brain 

regions that are known to exhibit greater anatomical changes during adult aging (e.g., lateral 

frontal cortex, superior parietal cortex; 21). In addition, SES-relationships were also evident in 

visual (e.g., middle occipital gyrus) and somatosensory-motor regions (e.g., medial precentral 

gyrus, postcentral gyrus). In later-middle age (ML), the positive relation between SES and 

thickness effects were less prominent than ME, but areas that have previously been linked to 

SES in children (e.g., left IFG; 22) as well as other areas in association systems (e.g., PreCu) 

exhibited a positive association with SES.  

Similar to a previous report that demonstrated younger adults exhibiting a negative 

correlation between SES (parental education + income) and gray matter volume in the ACC 

(12), we also found a negative correlation between our SES measure (education + occupation) 

and the gray matter thickness of the ventral ACC in younger adults. In the older adults, the only 

significant positive correlation between SES and thickness was found in the anterior 

insula/frontal operculum, an area implicated in cognitive control (typically a part of the cingulo-

opercular control and salience systems; 23, 24). A similar relationship has also previously been 

reported in older healthy adults, where education is correlated with the thickness in the insula 

(25). 

Altogether, while the regional analyses on functional network organization and brain 

anatomy are preliminary (and should be tempered with the threshold in the case of anatomical 

observations), the results suggest that regions involved in executive control and mnemonic 

processes are particularly susceptible to SES-related effects across adult aging. 
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Figure S1 - Regional thickness correlates with SES within each age group. Vertex-wise 
correlation between SES and gray matter thickness values within each group. Warmer color 
indicates a positive SES by thickness correlation, whereas cooler color indicates a negative 
SES by thickness correlation. Correlation maps are thresholded at p < .01 (uncorrected) and are 
depicted on a cortical surface rendering of the brain. Greater SES-related thickness differences 
shown in ME (see arrows; YA: posterior middle temporal gyrus [pMTG], inferior temporal gyrus 
[ITG], cuneus [Cu], lingual gyrus [LG], ventral anterior cingulate cortex [vACC], medial orbital 
frontal cortex [mOFC], temporal pole [TP]; ME: middle-frontal gyrus [MFG], anterior prefrontal 
cortex [aPFC], anterior superior temporal gyrus [aSTG], anterior middle temporal gyrus [aMTG], 
FusG [fusiform gyrus], middle occipital gyrus [MOG], superior parietal lobule [sPL], pMTG, 
angular gyrus [ANG], supramarginal gyrus [SMG], postcentral gyrus [postCG], vACC, mOFC, 
anterior superior frontal gyrus [aSFG], medial precentral gyrus [m-preCG], precuneus [PreCu], 
posterior cingulate cortex [PCC], middle occipital gyrus [MOG]; ML: OFC, inferior frontal gyrus 
[IFG], preCG, superior temporal gyrus [STG], PreCu, Cu; OA: anterior insula/frontal operculum 
[AI/FO]). 
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1.7. Distributions of SES, cortical thickness, and system segregation across age 
groups  

For both younger and older adults, it is possible that there exist differences in the basic 

features of the dataset across age groups. However, it is worth pointing out that the absence of 

SES-related differences in brain anatomy or functional network organization in younger or older 

adults cannot be easily explained by differences in either number of participants or 

range/variance of dependent/independent variables across the different age-groups. For 

example, the older adult group contains the greatest number of participants (n=132) and 

comparable range and variance of brain measures compared to the middle-early group 

(Levene’s test for homogeneity - segregation: F(1,173)=0.11, p=.743, OA range=0.28-0.63, 

SD=0.07 vs. ME range=0.41-0.62, SD=0.05; cortical thickness: F(1,173)=2.36, p=.126 OA 

range=1.99-2.83, SD=0.13 vs. ME range=2.23-2.66, SD=0.11) and middle-late group 

(segregation: F(1,215)=1.33, p=.716, ML range=0.25-0.62, SD=0.08; cortical thickness: 

F(1,215)=1.86, p=.174, ML range=2.09-2.60, SD=0.11). Conversely, the younger adult group 

(n=44) contains as many participants as the middle-early adult (n=43) group, and comparable 

range and variance of cortical thickness as the middle-late group (F(1,127)=2.43, p=.121, YA 

range=2.36-2.70, SD=0.08 vs. ML range=2.09-2.60, SD=0.11), and comparable range and 

variance as the middle-early group (F(1,85)=2.30, p=.132, YA range=0.42-0.66, SD=0.05 vs. 

ME range=0.41-0.62, SD=0.05). Importantly, the range and variance of SES is comparable 

across all age groups (F(3,300)=0.058, p=.982).  

 
  



SES moderates brain network organization in adults – SI Appendix 
 

 10 

2. SUPPLEMENTAL METHODS 

2.1. Structural imaging acquisition and preprocessing 
 All brain scans were acquired with a Philips Achieva 3T whole-body scanner (Philips 

Medical Systems, Bothell, WA) and a Philips 8-channel head coil at the University of Texas 

Southwestern Medical Center using the Philips SENSE parallel acquisition technique. A T1-

weighted sagittal magnetization-prepared rapid acquisition gradient echo (MP-RAGE) structural 

image was obtained (TR=8.1ms, TE=3.7ms, flip-angle=12°, FOV=204×256mm, 160 slices with 

1×1×1mm voxels). The scan duration was 3 minutes 57 seconds.  

FreeSurfer v5.3 was used to convert volumetric images into cortical surface 

representations using the following steps: brain extraction, segmentation, generation of white 

matter and pial surfaces (Fig. 1C), inflation of each surface to a sphere, and surface shape-

based spherical registration of the participant's ‘native’ left and right hemisphere surfaces to the 

fsaverage surface (26-28). As the participant sample was derived from the adult lifespan, 

considerable emphasis was placed on quality control and manual editing to diminish sources of 

potential artifact in the anatomical measurements (i.e., due to instrument noise or head 

movement; 29). Specifically, automated FreeSurfer outputs were manually inspected for poor 

skull stripping, inclusions of other tissues (e.g., dura matter, crossing of boundaries between pial 

and white matter surfaces), vessels or neighboring cortex, and obscuring of the gray and white 

matter boundary due to insufficient intensity normalization. Our editing procedures involved 

multiple iterations of editing and verification to minimize the known sources of artifact; we have 

recently shown how this process improves estimation of age-related differences in measures of 

brain anatomy (29).  

Deformation maps for each individual (one for each brain hemisphere) were generated 

by combining the (i) deformation maps created when registering an individual’s corrected 

‘native’ surfaces to FreeSurfer’s fsaverage atlas surfaces, and (ii) the deformation maps for 

registering fsaverage-aligned data to a hybrid left-right fsaverage atlas (fs_LR; 30). Each 

individual’s corrected ‘native-space’ FreeSurfer-generated surfaces were then registered to the 

fs_LR atlas using a single deformation map to limit data resampling.  

2.2. Resting-state fMRI acquisition and preprocessing 
Participants completed an eyes-open fixation resting-state blood-oxygen-level 

dependent (BOLD) scan, where they were instructed to stay still and fixate on a white cross-hair 

presented centrally on a black screen. The experimenter verified that participants complied with 

the instructions and did not fall asleep during the functional scan via verbal confirmation. The 
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scans were collected with the following parameters: TR=2000ms, TE=25ms, flip angle=80°, 

FOV=220mm, 43 interleaved axial slices per volume, 3.5/0mm (slice-thickness/gap), in-plane 

resolution=3.4×3.4mm. Participants completed either one (154 volumes) or two resting-state 

scans (180 volumes each). Five volumes were collected at the beginning of each functional 

scan to allow for T1 stabilization; these 5 volumes were discarded during preprocessing. 

Importantly, the number of volumes contributing to the analyses was equated across 

participants, after preprocessing and motion artifact removal (see below).  

Standard fMRI preprocessing was used to reduce artifacts through the following steps: 

slice timing correction, rigid body correction, and realignment. Data were shifted to a mode of 

1000 (31). Additional resting-state functional correlation (RSFC)-specific preprocessing steps 

were applied to reduce spurious variance unlikely to reflect neuronal activity: (i) demean & 

detrending, (ii) multiple regression of the BOLD data to remove variance related to the whole 

brain signal, ventricular signal, white matter signal, their derivatives (6 signal regressors derived 

from eroded FreeSurfer masks), and the ‘Friston24’ motion regressors (32), and (iii) band-pass 

filtering (0.009-0.08Hz). To reduce the effect of motion artifacts, a ‘scrubbing’ procedure was 

used to flag motion-contaminated resting-state fMRI volumes (i.e., if frame displacement [FD] > 

0.3mm). These flagged volumes were replaced with interpolated data for subsequent 

detrending, nuisance regression and band-pass filtering (i.e., repeating step (i) and (iii); 33). 

Lastly, the interpolated frames were re-censored in the final data. 

The inclusion of global signal regression in resting-state preprocessing has been shown 

to reduce spatially non-specific signal artifacts such as motion artifacts (33-35). These motion 

artifacts, if uncontrolled, have been shown to systematically alter the structure of RSFC patterns 

(35-38). Given that our sample of participants includes older adults with greater motion, with 

significant correlation between age and mean FD (r(302)=0.42, p<.001;  also seen in past 

studies; 29, 39, 40), high priority was placed on countering biases in the data by assuring that 

motion artifacts were removed. While there exists a possibility that genuine neural signals are 

embedded in the global signal (41), the present study employs a conservative approach to allow 

confidence in the interpretation of any age-related results. Furthermore, because older adults 

typically exhibit more motion artifacts, greater amounts of data from older adults were flagged 

and removed. To ensure that varying amounts of available data across age groups did not 

influence the results, the number of frames in each participant’s data was fixed at 75 frames to 

maintain a consistent amount of data across the entire sample. Notably, the principle finding 

(i.e., age group by SES interaction on brain system segregation) remained significant when 

using all ‘clean’ frames available in each participant (F(3,295)=3.95, p=.009, 𝜂=>=.04).  
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Preprocessed resting-state data were registered to the fs_LR (32k) left and right 

hemisphere surfaces for analysis (27). The participant-specific deformation maps constructed 

during structural MRI preprocessing were used for one step resampling of the volumetric 

functional data to the fs_LR surfaces. Lastly, data were smoothed across the surface using a 

Gaussian smoothing kernel (σ=2.55).  

2.3. Nodes and edges definition 
Surface-mapped RSFC brain graphs were constructed using a modified set of published 

nodes (8), in which a node-by-node matrix (i.e., brain graph) was calculated for each participant. 

The nodes were constructed by (i) identifying the locations of putative area center (each center 

at least 8mm apart) in a published RSFC-boundary map generated using younger adults data 

(42) and (ii) 3mm-radius disks were created around the area center to avoid putative boundary 

locations, which may exhibit more variability across participants (42). A total of 441 nodes were 

identified across the two hemispheres. Nodes in areas of lower signal intensity (< 800) were 

identified and discarded using the mean signal intensity map of the data that was used to create 

the original parcellation (42); this resulted in a final node count of 349 across the two 

hemispheres (Fig. 1A). 

 The resting-state time series of vertices within each node were averaged together to 

create a mean time course for each node. The cross-correlation of each node’s mean time 

course was incorporated into a node-to-node correlation matrix. Correlation coefficients were 

then converted into z-values using Fisher’s formula (43), resulting in the final Fisher’s z-

transformed r-matrix (z-matrix) for each participant (Fig. 1B). Due to possible artefactual 

negative correlations (44, 45) introduced by a necessary processing step used to ensure 

removal of motion-related artifacts (33, 35), negative z-values were excluded from the data 

matrix in accordance with past studies (8, 46). 

2.4. Brain measures 
System-specific Segregation 

Segregation of a specific system-type, such as association system segregation, 

represents the degree to which systems categorized as association systems are segregated 

from all other functional systems. The segregation of systems from other similar types of 

systems (i.e., association-to-association system segregation, sensory-to-sensory system 

segregation), or from other types of systems (i.e., association-to-sensory system segregation, 

sensory-to-association system segregation) could also be calculated by varying the calculation 

of between-system connectivity (𝐵@) in the following formula:   
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𝑆𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛BCDE@FDC=E = 	
𝑊@ − 𝐵@
𝑊@

 

where 𝑊@ is the mean within-system connectivity of community m in a specific system-type (i.e., 

association, sensory-motor). For overall brain system segregation, such as association system 

segregation, 𝐵@ is calculated as the mean between-system connectivity of each individual 

association system to all other systems (e.g., connectivity between frontal-parietal task control 

system to all other systems regardless of system-type). For more specific system-type-to-

system-type segregation, such as association-to-association segregation, 𝐵@ is calculated as 

the mean between-system connectivity of each individual association system to all other 

association systems (e.g., connectivity between frontal-parietal task control system and other 

association systems). Similarly, for association-to-sensory system segregation, 𝐵@is calculated 

as the mean connectivity between each individual association system to all sensory-motor 

systems. Once all the 𝑊@and 𝐵@ are calculated for the individual systems within each system-

type, averaged 𝑊@ (𝑊@) and averaged 𝐵@ (𝐵@) are used to calculate segregation based on the 

formula above. 

2.5. Measures of demographics, health and cognitive covariates 
Demographic covariates 

The participants' self-reported race was collected as a six-category variable (i.e., 

American Indian/Alaskan Native, Asian American/Pacific Islander, Black/African American, 

Multiracial, Other, White/Caucasian). 84% of the participants were White/Caucasian. The 

variable was recoded as a binary variable indicating whether or not the participant is a minority 

(i.e., reporting as non-white/Caucasian). This binary race variable was included along with 

participant gender as covariates to control for participant demographics. 

Physical health covariates 

For statistical models that controlled for physical health, covariates included the following 

measures: subjective physical health (SF-36, physical component score) (47), body mass index 

(BMI; based on self-reported height and weight), hypertension, smoking-status (binary coding of 

whether the individual was ever a smoker), alcohol consumption (standard drinks per week), 

and the presence of chronic physical health issues (i.e., asthma, hepatitis, migraine, 

encephalitis, heart problem, kidney disease, leukemia, pneumonia, arthritis, ulcers, thyroid 

problems, other physical illness). 

Subjective health was measured using the physical health component score from the 

SF-36 (47). The SF-36 is a standardized health questionnaire that can differentiate between 
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different patient groups (48). The physical component score (PCS) is the average of four sub-

scales: Physical Functioning, Role-Limitation (physical), Bodily Pain, and General Health. SF-36 

was missing from 8 participants. Data were imputed with the sample mean.  

The body mass index (BMI) was calculated based on self-reported height and weight. 

BMI data were missing for 10 participants (i.e., participants did not report exact height or 

weight). Data were imputed with the sample mean. 

Self-reported status of hypertension and smoking status (i.e., ever a smoker) were 

coded as binary variables. For alcohol consumption, participants reported approximately how 

many alcoholic drinks they consumer per week. Lastly, chronic physical health issues were 

coded from a survey completed by participants where they reported whether they experience 

any of the following chronic issues: asthma, hepatitis, migraine, encephalitis, heart problems, 

kidney disease, leukemia, pneumonia, arthritis, ulcers, thyroid problems, other physical illness. 

A participant is coded as ‘experiencing chronic health issues’ if they reported experiencing one 

or more of the above chronic health conditions. 

Mental health covariates 
For statistical models that controlled for mental health, covariates included depressive 

symptoms, which were assessed using the Center for Epidemiologic Studies Depression Scale 

(CES-D; 49) and subjective well-being, which was assessed using the Satisfaction With Life 

Scale (50).  

The CES-D was used to measures a participant’s depressive symptoms. Scores ranged 

from 0 to 60, with higher scores indicating more symptoms of depression. Importantly, none of 

the participants were clinically diagnosed with any depressive disorder at the time of enrollment.  

Subjective well-being was measured by the Satisfaction with Life Scale (SWLS; 50), a 

short 5-item scale that measures life satisfaction (e.g., ‘In most ways my life is close to my 

ideal,’ and ‘If I could live life over, I would change almost nothing’). It uses a 7 point Likert scale 

for each item, from ‘Strongly Agree’ to ‘Strongly Disagree’. Responses to the 5 items were 

averaged to generate life satisfaction score. 

Cognitive function covariates 

Following procedures from previous work (8), exploratory factor analysis (EFA) was 

performed on 21 cognitive scores to find the common variance between multiple variables. The 

number of factors was determined by a quantitative approach, parallel analysis (simulation data 

= 10000) (51). Three factors were returned, in which two were negatively correlated with age; 

these factors loaded on to tasks related to episodic memory and fluid intelligence. These two 
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factors were used as covarites in the present study. See Table S2 for list of cognitive tasks in 

episodic memory and fluid intelligence factors.  

 

Cognitive 
Factors Cognitive tasks Age 

correlation 

Episodic 
Memory 

Hopkins Verbal Learning Test – Immediate Recall (52) 

-0.22, 
p<.001 

Hopkins Verbal Learning Test – Delayed Recall 
Hopkins Verbal Learning Test – Recognition Accuracy  
CANTAB Verbal Recognition Memory – Immediate Recall (53) 
CANTAB Verbal Recognition Memory – Recognition Accuracy  

Fluid 
intelligence 

Digit Comparison (54) 

-0.72, 
p<.001 

WAIS Digit Symbol (55) 
FAS (56) 
Letter Number Sequencing 
CANTAB Spatial Working Memory  
CANTAB Spatial Recognition Memory 
CANTAB Delayed Matching to Sample 
Operation Span (57) 
CANTAB Stop Signal Task 
ETS Card Rotation (58) 
Raven’s Progressive Matrices (59) 
ETS Letter Sets  
CANTAB Stocking of Cambridge 

 
Table S2 – List of cognitive tasks, and age correlation with cognitive factors. 
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