Evolving antibody repertoire to vaccine and virus

evolutionary arms race and ecological feedback

Shenshen Wang

Dept. of Physics & Astronomy

Center for Biological Physics

UCLA

Antibody evolution is a collective phenomenon

 $10^{-9}m$ second

Molecular interaction (antibody-antigen binding)

Intermediate scale

 $10^{-6}m - 10^{-4}m$ min to hour

Large scale

 $10^{-2}m - 1m$ day to month

Population ensemble (lymph node)

How does the immune system represent the environment?

How does adaptation propagate across scales?

Counteracting tremendous antigenic variability

• Broadly neutralizing antibodies (bnAbs) to HIV-1: 'sites of vulnerability'

Burton & Hangartner. Annu. Rev. Immunol. 2016

Burton et al. 2012

Difficult yet accessible

Viral diversification precedes breadth acquisition

- Extensive escape-generated epitope diversification
- Plasma breadth evolved in the presence of highly diverse forms of the epitope contact regions
- bnAbs remain capable of neutralizing transmitted/founder virus

Sustained mutual selection btw engaged B cell & escaping virus

Paths to potent bNAbs are often long and few

- Persistence is needed
 Correlation btw mutation load & breadth
- Breadth is progressively acquired
 GL reversion abolishes breadth
- Lineages can affect one another
 Helper lineage selects breadth-driving mutants

BnAb lineages can be activated, and yet do not readily expand.

Gao et al. Cell (2014) Bonsignori et al. Cell (2016)

Germinal center reaction: affinity maturation of B cells

Presentation of *multiple* Ag variants on FDCs

Agent-based model of GC reaction

- ★ Deleterious mutations more likely
- ★ Stochastic clonal selection
 - competition for Ag and T help
 - affinity-dependent death rate
- ★ Time-varying B cell population size
- ★ Parallel populations

Learning by examples

- Frustrated affinity maturation
- Mutationally distant targets
- Spatial heterogeneity => temporal variation
- B cell lineages either go extinct or stay specific

- Dynamic programming
- Acquiring new reactivity without degrading earlier ones
- Extracting recurrent patterns

An evolvable solution

SW ... MK & AKC, Cell **160**, 785-797 (2015)

Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice

Amelia Escolano,^{1,6} Jon M. Steichen,^{2,6} Pia Dosenovic,¹ Daniel W. Kulp,² Jovana Golijanin,¹ Devin Sok,^{2,3} Natalia T. Freund,¹ Alexander D. Gitlin,¹ Thiago Oliveira,¹ Tatsuya Araki,¹ Sarina Lowe,¹ Spencer T. Chen,¹ Jennifer Heinemann,¹ Kai-Hui Yao,¹ Erik Georgeson,² Karen L. Saye-Francisco,² Anna Gazumyan,¹ Yumiko Adachi,² Michael Kubitz,² Dennis R. Burton,^{2,4} William R. Schief,^{2,4,*} and Michael C. Nussenzweig^{1,5,7,*}

Mouse antibodies elicited by sequential immunization resemble human antibodies

- * A. Escolano, *et al.* Sequential immunization elicits broadly neutralizing anti-HIV-1 antibodies in Ig knockin mice. *Cell* **166**:1445-58, September 2016.
- * B. Briney, et al. Tailored immunogens direct affinity maturation toward HIV neutralizing antibodies. *Cell* **166**:1459-70, September 2016.
- * M. Tian, et al. Induction of HIV neutralizing antibody lineages in mice with diverse precursor repertoires. *Cell* **166**:1471-84, September 2016.

Distracting epitopes

Antigen variants with complex epitopes

G: germline-activating reference strain

V1 & V2: target-epitope variants

Minimal distraction under optimal frustration

SW (2017) PLoS Comput. Biol. 13: e1005336

Diversity loss mitigates memory dominance

Host-pathogen co-adaptation

What could be a useful phenotypic space?

Mutual selection

$$P_{surv}(E(||\vec{x}-\vec{y}||))$$

Host-pathogen co-adaptation

Ecological feedback

'Sphere of influence' in the shape space

Asymmetry btw activation and neutralization

$$\begin{split} \frac{\partial A}{\partial t} &= \lambda_1 A - \alpha_1 A B_{eff} + d_1 \nabla^2 A \\ \frac{\partial B}{\partial t} &= -\lambda_2 B + \alpha_2 R A_{eff} + d_2 \nabla^2 B + \xi \Big(1 - \frac{B_{tot}}{\Theta}\Big) B + B_{in} \end{split}$$

Pattern-forming instability ⇔ population dynamics

Mapping the evolutionary landscape

DM Fowler & S Fields. *Nature Methods*, 2014. EE Wrenbeck, MS Faber & TA Whitehead. *Curr. Opi. Struct. Biol.* 2017

RM Adams, T Mora, AM. Walczak & JB Kinney. eLife, 5:e23156, 2016. RM Adams, JB Kinney, AM Walczak & T. Mora. arXiv:1712.04000v1.

Collaborating thoughts

Relative age of host and pathogen

Memory renewal against aging; modulating memory-naïve competition

Vaccine-driven viral evolution for delayed aging;
 how may HIV differ from flu (HCV, Ebola, etc.)?

Spatially varying selection pressure: coevolution on the move