On the stability of large ecological communities [when an ecosystem breaks]

> Jacopo Grilli Santa Fe Institute

WG Cognitive Regime Shift I, SFI, July 23rd 2018

Regime shifts

Conditions

Regime shifts

Regime shifts

Resilience and stability

Resilience and stability

$$\frac{dx_i}{dt} = f_i(\underline{x})$$
$$A_{ij} = \frac{\partial f_i}{\partial x_j}\Big|_{\underline{x}^*}$$

model A

- A is large
- A is random (some stochastic rule to fill its entries)

model A

- A is large
- A is random (some stochastic rule to fill its entries) the question: what is the largest eigenvalue of A?

30% pairs are interacting

p(A_{ij},A_{ji})

30% pairs are interacting

p(A_{ij},A_{ji})

100% pairs are interacting

100% pairs are interacting

Anatomy of a random matrix

Anatomy of a random matrix

Anatomy of a random matrix

- only 4 important parameters (instead of size²)
- a realization behaves as the average

- only 4 important parameters (instead of size²)
- a realization behaves as the average

...but interactions are not random

- only 4 important parameters (instead of size²)
- a realization behaves as the average

structureless ...but interactions are not random

- only 4 important parameters (instead of size²)
- a realization behaves as the average

structureless ...but interactions are not random

four examples:

- directionality
- modules / communities
- effect of the fixed point
- space

only 4 important parameters (instead of size²)
a realization behaves as the average

structureless ...but interactions are not random

four examples:

- directionality

- modules / communities
- effect of the fixed point
- space

[Allesina, Grilli, Barbaas, Tang, Maritan, Nature Communications, 2015]

Cascade model

Big Fish Eat Little Fish

Pieter Bruegel the Elder, 1557

Cascade model

Cohen et al., 1990

order S species species i has probability C of eating any of the preceding species **produces acyclic graphs**

The eyeball

Our strategy: eyeball = eye + ball

Eigenvalues of A lay on a circumference

direction determined by the mean

Eigenvalues of B are uniform in an ellipse

It is possible to derive a new stability criterion for structured food-webs

It is possible to derive a new stability criterion for structured food-webs

It is possible to derive a new stability criterion for structured food-webs

The stability criterion works well for empirical foodwebs

15 foodwebs [empirical network structure]

coefficient determined using allometric scaling

The stability criterion works well for empirical foodwebs

15 foodwebs [empirical network structure]

coefficient determined using allometric scaling

If the interactions are random

only 4 important parameters (instead of size²)
a realization behaves as the average

structureless ...but interactions are not random

four examples:

- directionality
- modules / communities
- effect of the fixed point
- space

[Grilli, Rogers and Allesina, Nature Communications, 2016]

Full characterization of the effect of modularity

[Grilli, Rogers and Allesina, Nature Communications, 2016]

Usually destabilizing (but effect depends on interactions)

"effect depends on interactions" is more general

If the interactions are random

only 4 important parameters (instead of size²)
a realization behaves as the average

structureless ...but interactions are not random

four examples:

- directionality
- modules / communities
- effect of the fixed point
- space

[Gibbs, Grilli, Rogers and Allesina, arXiv:1708.08837]

 $\frac{dx_i(t)}{dt} = \phi_i(x_i(t))H_i\left(\sum_j A_{ij}x_j(t)\right)$

$$\frac{dx_i(t)}{dt} = \phi_i(x_i(t))H_i\left(\sum_j A_{ij}x_j(t)\right)$$

$$\frac{\partial f_i}{\partial x_j}\Big|_{x^*} = M_{ij} = X_i A_{ij}$$

$$\frac{dx_i(t)}{dt} = \phi_i(x_i(t))H_i\left(\sum_j A_{ij}x_j(t)\right)$$

$$\left. \frac{\partial f_i}{\partial x_j} \right|_{x^*} = M_{ij} = X_i A_{ij}$$

SDA 🛑 0.25 📥 0.5 🔲 0.75

For large random matrices stability is determined uniquely by interactions

Measuring moments of interactions

Traditionally: infer N² interaction from N time series

If the interactions are random

only 4 important parameters (instead of size²)
a realization behaves as the average

structureless ...but interactions are not random

four examples:

- directionality
- modules / communities
- effect of the fixed point
- space

[Grilli, Barabais and Allesina, Plos Comp Bio 2015]

Metapopulation

local death + dispersion

Persistence if eigenvalue of dispersion matrix is larger than death rate

Eigenvalue depends on everything

The eigenvalue depends on one effective parameter

Measuring moments of interactions

Traditionally: infer N² interaction from N time series

Can we directly infer the moments (or more generally the statistical properties) of the interactions?

Take home messages

Universality: lot of details do not matter

Few features of networks are important for stability

Network structure alone is not sufficient

Acknowledgments

S. Allesina, Y. Aljadeff, G. Barabás, T. Gibbs, T. Rogers, S. Tang

thank you!