On the stability of large ecological communities
 [when an ecosystem breaks]

Jacopo Grilli

Santa Fe Institute

Regime shifts

Conditions

Conditions

Conditions

Regime shifts

Regime shifts

Conditions

Conditions

Conditions

Regime shifts

Conditions

Conditions

Conditions

[Scheffer et al., Nature 2001]

Resilience and stability

Resilience and stability

Resilience and stability

($-\lambda^{*}$ determines the speed to return to equilibrium)

Resilience and stability

λ^{*} (largest eigenvalue of A)

$$
\begin{gathered}
\lambda^{*}<0 \text { stable } \\
\lambda^{*}>0 \text { unstable }
\end{gathered}
$$

$\lambda^{*}=0$ critical
$(-\lambda$ * determines the speed to return to equilibrium)

Random matrix approach

$$
\begin{aligned}
\frac{d x_{i}}{d t} & =f_{i}(\underline{x}) \\
A_{i j} & =\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\underline{x}^{*}}
\end{aligned}
$$

Random matrix approach

$$
\begin{aligned}
& \frac{d x_{i}}{d t}=f_{i}(\underline{x}) \\
& A_{i j}=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\underline{\underline{\imath}}}
\end{aligned}
$$

Random matrix approach

$$
\begin{aligned}
& \frac{d x_{i}}{d t}=f_{i}(\underline{x}) \\
& A_{i j}=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\underline{\underline{x}}}
\end{aligned}
$$

model A

- A is large
- A is random (some stochastic rule to fill its entries)

Random matrix approach

$$
\begin{aligned}
& \frac{d x_{i}}{d t}=f_{i}(\underline{x}) \\
& A_{i j}=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\underline{\underline{x}}}
\end{aligned}
$$

model A

- A is large
- A is random (some stochastic rule to fill its entries) the question:
what is the largest eigenvalue of A?
$\mathrm{p}\left(\mathrm{A}_{\mathrm{ij}}, \mathrm{A}_{\mathrm{j}}\right)$

Why large and random?

$p\left(\mathrm{~A}_{\mathrm{ij}}, \mathrm{A}_{\mathrm{ji}}\right)$

Why large and random?

30% pairs are interacting

$\mathrm{p}\left(\mathrm{A}_{\mathrm{ij}}, \mathrm{A}_{\mathrm{ji}}\right)$

Why large and random?

30% pairs are interacting

$\mathrm{p}\left(\mathrm{A}_{\mathrm{ij}}, \mathrm{A}_{\mathrm{j}}\right)$
30\% pairs are interacting

100\% pairs are interacting

$\mathrm{p}\left(\mathrm{A}_{\mathrm{ij}}, \mathrm{A}_{\mathrm{j}}\right)$

Why large and random?

100\% pairs are interacting

Anatomy of a random matrix

If the interactions are random

- only 4 important parameters (instead of size ${ }^{2}$)
- a realization behaves as the average

If the interactions are random

- only 4 important parameters (instead of size ${ }^{2}$)
- a realization behaves as the average

If the interactions are random

- only 4 important parameters (instead of size ${ }^{2}$)
- a realization behaves as the average

If the interactions are random

- only 4 important parameters (instead of size ${ }^{2}$)
- a realization behaves as the average
...but interactions are not structureless
four examples:
- directionality
- modules / communities
- effect of the fixed point
- space

- only 4 important parameters (instead of size ${ }^{2}$) - a realization behaves as the average

four examples:

- directionality
- modules / communities
- effect of the fixed point
- space
[Allesina, Grilli, Barbaas, Tang, Maritan, Nature Communications, 2015 .

GRANDIBVS EXIGVI SVVNT P P I S C C E S PISCIBVS ESCA.

Cascade model

Big Fish Eat Little Fish

Pieter Bruegel the Elder, 1557

Cascade model

Cohen et al., 1990
order S species
species i has probability C of eating any of the preceding species produces acyclic graphs

The eyeball

Our strategy: eyeball = eye + ball

Eigenvalues of A lay on a circumference

negative mean

positive mean

direction determined by the mean

Eigenvalues of B are uniform in an ellipse

It is possible to derive a new stability criterion for structured food-webs

It is possible to derive a new stability criterion for structured food-webs

It is possible to derive a new stability criterion for structured food-webs

The stability criterion works well for empirical foodwebs

[empirical network
structure]
coefficient determined
using allometric scaling

The stability criterion works well for empirical foodwebs

- only 4 important parameters (instead of size²) - a realization behaves as the average

four examples:

- directionality
- modules / communities
- effect of the fixed point
- space
[Grilli, Rogers and Allesina, Nature Communications, 2016]

Communities

Full characterization of the effect of modularity

[Grilli, Rogers and Allesina, Nature Communications, 2016]

Usually destabilizing (but effect depends on interactions)

"effect depends on interactions" is more general

- only 4 important parameters (instead of size²) - a realization behaves as the average

[Gibbs, Grilli, Rogers and Allesina, arXiv:1708.08837]

Stability in an explicit model

$$
\frac{d x_{i}(t)}{d t}=\phi_{i}\left(x_{i}(t)\right) H_{i}\left(\sum_{j} A_{i j} x_{j}(t)\right)
$$

Stability in an explicit model

$$
\frac{d x_{i}(t)}{d t}=\phi_{i}\left(x_{i}(t)\right) H_{i}\left(\sum_{j} A_{i j} x_{j}(t)\right)
$$

$$
\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{x^{*}}=M_{i j}=X_{i} A_{i j}
$$

Stability in an explicit model

$$
\frac{d x_{i}(t)}{d t}=\phi_{i}\left(x_{i}(t)\right) H_{i}\left(\sum_{j} A_{i j} x_{j}(t)\right)
$$

$$
\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{x^{*}}=M_{i j}=\underbrace{\text { random matrix }}_{\text {random vector }}
$$

Stability in an explicit model

$$
\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{x^{*}}=M_{i j}=X_{i} A_{i j}
$$

Stability in an explicit model

SDA $0.25 \triangle 0.5 \square 0.75$

For large random matrices stability is determined uniquely by interactions

$d \bigcirc 0.025 \triangle 0.05 \square 0.1$

Measuring moments of interactions

Traditionally: infer N^{2} interaction from N time series

- only 4 important parameters (instead of size²) - a realization behaves as the average

- space
[Grilli, Barabais and Allesina, Plos Comp Bio 2015]

Metapopulation

local death + dispersion

Persistence if eigenvalue of dispersion matrix is larger than death rate

Eigenvalue depends on everything

The eigenvalue depends on one effective parameter

Measuring moments of interactions

Traditionally: infer N^{2} interaction from N time series
Can we directly infer the moments
(or more generally the statistical properties) of the interactions?

Take home messages

Universality: lot of details do not matter
Few features of networks are important for stability

Network structure alone is not sufficient

Acknowledgments

S. Allesina, Y. Aljadeff, G. Barabás, T. Gibbs, T. Rogers, S. Tang

