
Jacopo Grilli
Santa Fe Institute

WG Cognitive Regime Shift I, SFI, July 23rd 2018

On the stability of large
ecological communities
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Regime shifts

[Scheffer et al., Nature 2001]

what is the role of
                 (ecological)
                   interactions?
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linearize (~small perturbations)

+ perturbations
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Resilience and stability

λ* (largest eigenvalue of A)

λ*<0 stable
λ*>0 unstable 

λ*=0 critical

(-λ* determines the speed
to return to equilibrium) 
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- A is large
- A is random (some stochastic rule to fill its entries)



Random matrix approach

model A
- A is large
- A is random (some stochastic rule to fill its entries)
the question:
what is the largest eigenvalue of A?
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- mean * size
(variance*size (1+correlation)

center: - average diagonal

(variance*size (1-correlation)
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If the interactions are random

- only 4 important parameters (instead of size2)
- a realization behaves as the average 

...but interactions are not random
structureless

four examples:
- directionality
- modules / communities
- effect of the fixed point
- space

[Allesina, Grilli, Barbaas, Tang, Maritan, Nature Communications, 2015]



Pieter Bruegel the Elder, 1557



Cascade model

Pieter Bruegel the Elder, 1557 Cohen et al., 1990

Big Fish Eat Little Fish Cascade model

order S species
species i has probability C of eating any of the preceding species

produces acyclic graphs



The eyeball
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Our strategy: eyeball = eye + ball

M A B = M − A
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Eigenvalues of A lay on a circumference

direction determined by the mean
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Eigenvalues of B are uniform in an ellipse

µx = 0
µy = 0

σx = 1.49
σy = 16.96
ρxy = − 0.47−200
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It is possible to derive a new stability
criterion for structured food-webs
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The stability criterion works well for
empirical foodwebs
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The stability criterion works well for
empirical foodwebs
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If the interactions are random

- only 4 important parameters (instead of size2)
- a realization behaves as the average 

...but interactions are not random
structureless

four examples:
- directionality
- modules / communities
- effect of the fixed point
- space

[Grilli, Rogers and Allesina, Nature Communications, 2016]



Communities





Full characterization of the effect of
modularity

[Grilli, Rogers and Allesina, Nature Communications, 2016]



Usually destabilizing
(but effect depends on interactions)



"effect depends on interactions"
is more general



If the interactions are random

- only 4 important parameters (instead of size2)
- a realization behaves as the average 

...but interactions are not random
structureless

four examples:
- directionality
- modules / communities
- effect of the fixed point
- space

[Gibbs, Grilli, Rogers and Allesina, arXiv:1708.08837]
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Stability in an explicit model 

random vector

random matrix



Stability in an explicit model 



Stability in an explicit model 



For large random matrices stability
is determined uniquely by interactions



Measuring moments of interactions

Traditionally: infer N2 interaction from N time series



If the interactions are random

- only 4 important parameters (instead of size2)
- a realization behaves as the average 

...but interactions are not random
structureless

four examples:
- directionality
- modules / communities
- effect of the fixed point
- space

[Grilli, Barabais and Allesina, Plos Comp Bio 2015]



Metapopulation

local death + dispersion

Persistence if eigenvalue of dispersion matrix is
larger than death rate



Eigenvalue depends on everything
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The eigenvalue depends on 
one effective parameter
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Measuring moments of interactions

Traditionally: infer N2 interaction from N time series

Can we directly infer the moments
(or more generally the statistical properties)

of the interactions?



Take home messages

Universality: lot of details do not matter

Few features of networks are important for
stability

Network structure alone is not sufficient



th  nk y   u!
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