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Theory of DIORs — Data collection — Analysis — Results interpretation — Discussion

Quantifying resilience

Predict how patients will recover when health is challenged by disease or
treatment

* Physical resilience = an individual’s ability to resist functional decline or
recover physical health following a stressor [1]

* Dynamical phenomena require dynamic tests

*  Complement static indicators of reserve capacities or cumulative damage

[1] Whitson et al. 2015 JGMS Radboudumc
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Dynamical measurements

Two types:

1) Challenge test: perturb the body and measure recovery time

Orthostatic artificial stressor
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Dynamical measurements

Two types:
1) Challenge test: perturb the body and measure recovery time

2)  Monitoring of natural perturbations: zoom in on “microdynamics”

Orthostatic artificial stressor natural stressors
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Low resilience = critical slowing down

* Generic theory of dynamical systems [3]
* Rate of change around the equilibrium decreases
* Changes in pattern of fluctuations of parameters over time

High resilience Low resilience
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Low resilience = critical slowing down

* Generic theory of dynamical systems [3]
* Rate of change around the equilibrium decreases
* Changes in pattern of fluctuations of parameters over time
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Dynamical indicators of resilience (1+2)

Critical slowing down typically causes an increase in variance + temporal
autocorrelation of fluctuations of a parameter measured over time [3]

High resilience
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Dynamical indicators of resilience (3)
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DIORs in the older person

Mood [6]
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Collecting time series data for DIORs

Time-series measures showing short- and long- term fluctuations in levels of a
given function

* Heart rate, blood pressure, balance [10]
* Body temperature
e Attention (reaction times)

Physical

Self-rated mood / anxiety / wellbeing / health / fatigue > Mental
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Example: reaction speed time series
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Analyzing time series data for DIORs  Main challenges

Step 1: Exploration of time series
- Visualize data with plots
— Data in context of system and responses of interest

Step 2: Pre-processing of data: filtering,[smoothing, detrending} etc.
* Driven by knowledge of the system of interest
* Driven by the data

Step 3: Calculation of DIORs
—> Variance: standard deviation
- Temporal autocorrelation{choose a lag?
— Cross-correlation: Pearson’s correlation

Step 4: Analyze relationship with relevant participant characteristics

Radboudumc
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Analyzing DIORs in time series

Step 1: Exploration of time series
- Visualize data with plots

— Data in context of system and responses of interest
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Analyzing DIORs in time series

* Step 2: Pre-processing of data: fiItering,[smoothing,]detrending, etc.
* Driven by knowledge of the system of interest
* Driven by the data

Moving average
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Analyzing DIORs in time series

* Step 2: Pre-processing of data: filtering, smoothing,[detrending] etc.
* Driven by knowledge of the system of interest
* Driven by the data

end of greenhouse Earth

Detrending S
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Analyzing DIORs in time series

* Step 3: Calculation of DIORs
—> Variance: standard deviation
— Temporal autocorrelation; choose a lag
—> Cross-correlation: Pearson’s correlation

Choosing a lag for oversampled time series

-Shift the time series|a certain number of data points'

Y
Lag

Radboudumc
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Example: heart rate temporal autocorrelation

1-hour heart rate plot-
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Example: heart rate temporal autocorrelation

1-hour heart rate plot
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Temporal autocorrelation

Analyzing DIORs in time series
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Step 3: Calculation of DIORs
- Variance: standard deviation

- Temporal autocorrelation{choose a Iag]

— Cross-correlation: Pearson’s correlation

CoP displacement ML-direction
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Choosing a lag for oversampled time series

-Shift the time series a certain number of data points

Y
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-What is the characteristic response rate of the

system?

-Within the range of interest, compare multiple lags
with an autocorrelation function graph
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Example: temporal autocorrelation graphs

Temporal autocorrelation
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Analyzing DIORs in time series

Step 2: Pre-processing of data: fiItering[smoothing, detrending, etc.
* Driven by knowledge of the system of iiiterest
* Driven by the data

Step 3: Calculation of DIORs
— Variance: standard deviation
- Temporal autocorrelation{choose a Iag]
— Cross-correlation: Pearson’s correlation

< Combine parameters in a contour plot with a
test statistic?

sliding window
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filtering bandwidth Radboudumc
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Analyzing DIORs in time series

Step 1: Exploration of time series
- Visualize data with plots
— Data in context of system and responses of interest

Step 2: Pre-processing of data: filtering,[smoothing, detrending} etc.
* Driven by knowledge of the system of interest
* Driven by the data

Step 3: Calculation of DIORs
—> Variance: standard deviation
- Temporal autocorrelation{choose a lag first
— Cross-correlation: Pearson’s correlation

Step 4: Analyze relationship with relevant participant characteristics

Radboudumc
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Crucial considerations to make beforehand

*  What exactly is the system and the response of interest?

* Do your measurements capture the characteristic system dynamics?
 Which variable(s)?
*  Which measurement device/study design?
* Occurrence of natural perturbations?

*  Frequency of observations: sampling at intervals shorter than the
characteristic time scales of the slowest return rate of the system

Radboudumc
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Interpretation of results

Main challenges:

1.  Enormous heterogeneity of geriatric patients
e C(linical trajectories
e Dynamic fluctuations of bodily functions

Radboudumc
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Interpretation of results

‘Health’

status

Main challenges: A

1.  Enormous heterogeneity of
geriatric patients

2. Results in context of theory
of critical slowing down
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Discussion

Preliminary evidence for the value of dynamical indicators of resilience in
the aging human

* Challenge to collect&analyze data and interpret results
* How are DIORs related to other complexity measures?
*  Which systems are the right proxies for resilience of the whole body?

* How to study resilience from the perspective of the network of organs
(cross-correlations)?

Radboudumc
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