Higher-order interactions, stability and macroecological patterns

Jan 30, 2019 - WG Irreversibility in Ecology - SFI

How is biodiversity generated?

How is biodiversity mantained?

How is biodiversity generated?

Role of stochasticity Role of interactions

How is biodiversity mantained?

Neutral theory explains statical patterns observed across ecosystems

[Volkov, Maritan, Hubbel and Banavar, Nature 2003] [Azaele, Suweis, Grilli, Volkov, Banavar and Maritan, Review of Modern Physics 2016]

Neutral theory explains spatial patterns observed across ecosystems

[Grilli, Azaele, Banavar and Maritan, JTB 2012]

Neutral theory explains dynamical patterns observed across ecosystems

[Bertuzzo, Suweis, Mari, Maritan and Rinaldo, PNAS 2011] [Azaele, Suweis, Grilli, Volkov, Banavar and Maritan, Review of Modern Physics 2016]

What we do like about neutral theory

Reproduces and predicts macro-ecological patterns from minimal assumptions

High biodiversity "for free"

Simple and tractable

Biodiversity is not for free

Stability decreases as biodiversity and/or interaction strenghts increase

[May, Will a large complex system be stable?, Nature 1972]

Biodiversity is not for free

Stability decreases as biodiversity and/or interaction strenghts increase

[May, Will a large complex system be stable?, Nature 1972]

This argument still holds if you consider

Different interaction types [Allesina & Tang, Nature 2012]

Modular structures [Grilli et al, Nat Comm 2016] "Realistic" food web structure [Allesina et al, Nat Comm 2015]

Response to condition variability [Grilli et al, Nat Comm 2017]

What we do like about neutral theory

Reproduces and predicts macro-ecological patterns from minimal assumptions

High biodiversity "for free"

Simple and tractable

What we do not like about neutral theory

Sensitivity to the hypothesis of ecological equivalence

Stability is only neutral

No interactions

Wrong species ages

Back-of-the-envelope calculation on species ages

number of generations of a species with relative abundance x

$$a(x) = 2N\frac{x}{1-x}|\log(x)|$$

[Kimura 1983]

Back-of-the-envelope calculation on species ages

number of generations of a species with relative abundance x

$$a(x) = 2N\frac{x}{1-x}|\log(x)|$$

[Kimura 1983]

Amazon rainforest

Total number of trees: N ~ 10¹¹ Most abundant species tree: x ~ 10⁻² Generation time of trees: ~ 30 years Age of the most abundant species: ~10¹¹ years Age of the universe: ~10¹⁰ years, First tree: ~10⁸ years ago [Caveat: N is not constant. The effective N is the harmonic mean over time...]

What we do not like about neutral theory

Sensitivity to the hypothesis of ecological equivalence

Stability is only neutral

No interactions

Wrong species ages

What we do not like about neutral theory

Sensitivity to the hypothesis of ecological equivalence

Stability is only neutral

No interactions

Wrong species ages

What next?

1. Closed systems (no migration/speciation) Deterministic analysis

2.

Closed systems (no migration/speciation) Effect of stochasticity

3.

Open systems (migration/speciation) Compare to neutral theory prediction

 $\Sigma x_i = 1$

death

 $\Sigma x_i = 1$

rate = $d_i x_i$

Neutral theory

in the case of equal physiological rates $f_i = d_i = 1$ and equal competition abilities $H_{ii} = H_{ji} = 1/2$

Hypertournaments

in the case of equal physiological rates $f_i = d_i = 1$ and arbitrary $H_{ij} = 1 - H_{ji}$

Full model

Arbitrary physiological rates f_i , d_i and $H_{ij} = 1 - H_{ji}$

Neutral theory

in the case of equal physiological rates $f_i = d_i = 1$ and equal competition abilities $H_{ii} = H_{ii} = 1/2$

Hypertournaments

in the case of equal physiological rates $f_i = d_i = 1$ and arbitrary $H_{ij} = 1 - H_{ji}$

Full model

Arbitrary physiological rates f_i , d_i and $H_{ij} = 1 - H_{ji}$

Deterministic limit

$$\dot{x}_i = 2x_i \sum_j H_{ij} x_j - x_i$$

Deterministic limit

$$\dot{x}_i = 2x_i \sum_j H_{ij} x_j - x_i$$

equivalent to the replicator equation

$$\dot{x}_i = x_i \sum_j (H_{ij} - H_{ji}) x_j = x_i \sum_j P_{ij} x_j$$

Deterministic limit

$$\dot{x}_i = 2x_i \sum_j H_{ij} x_j - x_i$$

equivalent to the replicator equation

$$\dot{x}_i = x_i \sum_j (H_{ij} - H_{ji}) x_j = x_i \sum_j P_{ij} x_j$$
payoff of a symmetric game

Deterministic limit

$$\dot{x}_i = 2x_i \sum_j H_{ij} x_j - x_i$$

equivalent to the replicator equation

$$\dot{x}_i = x_i \sum_j (H_{ij} - H_{ji}) x_j = x_i \sum_j P_{ij} x_j$$

payoff of a symmetric game

$$P = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \qquad H = \begin{pmatrix} \frac{1}{2} & 1 & 0 \\ 0 & \frac{1}{2} & 1 \\ 1 & 0 & \frac{1}{2} \end{pmatrix}$$

Deterministic limit

$$\dot{x}_i = 2x_i \sum_j H_{ij} x_j - x_i$$

equivalent to the replicator equation

$$\dot{x}_{i} = x_{i} \sum_{j} (H_{ij} - H_{ji}) x_{j} = x_{i} \sum_{j} P_{ij} x_{j}$$
payoff of a symmetric game
$$P = \begin{pmatrix} 0 & 1 - 1 & 1 & 1 \\ -1 & 0 & 1 & -1 \\ -1 & 0 & 1 & -1 \\ 1 & 1 & 0 & 1 & -1 \\ -1 & 1 & 1 & 0 & 1 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} \quad H = \begin{pmatrix} \frac{1}{2} & 1 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & 1 & 0 & 1 \\ 0 & \frac{1}{2} & 1 & 0 & 1 \\ 0 & 1 & 0 & \frac{1}{2} & 1 \\ 1 & 0 & 1 & 0 & \frac{1}{2} \end{pmatrix}$$

Always neutral cycles

(if a fixed point exists)

This model generates high biodiversity

Starting with 50 species and random interaction H

~ binomially distributed (only odd number of species) On average half of the species survive
Neutral theory

in the case of equal physiological rates $f_i = d_i = 1$ and equal competition abilities $H_{ii} = H_{ji} = 1/2$

Hypertournaments

in the case of equal physiological rates $f_i = d_i = 1$ and arbitrary $H_{ij} = 1 - H_{ji}$

Full model

Arbitrary physiological rates f_i , d_i and $H_{ij} = 1 - H_{ji}$

Variability of physiological rates inevitably leads to instability

The fixed point (if it exists) is unstable for **any** not fine tuned choice of physiological rates

Summary of results for pairwise interactions

Arbitrary H_{ij} and equal physiological rates

Neutral cycles around a fixed point

Random H_{ij}: on average half of the species coexist [Brandl, working paper 2015]

Arbitrary H_{ij} and arbitrary physiological rates

Fixed point is **always** unstable [this work]

What we do not like about neutral theory

Sensitivity to the hypothesis of ecological equivalence

Stability is only neutral

No interactions

competition

i wins with j: prob H_{ij}=1-H_{ji}

Higher-order interactions

competition

i wins with j: prob H_{ii}=1-H_{ii}

Higher-order interactions

Higher-order interactions

Strongly debated: - their presence (common or rare?) - their inference/measure - their effect on community dynamics

$$\dot{x}_i = x_i \sum_j (H_{ij} - H_{ji}) x_j = x_i \sum_j P_{ij} x_j$$
payoff of a symmetric game

$$P = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \qquad H = \begin{pmatrix} \frac{1}{2} & 1 & 0 \\ 0 & \frac{1}{2} & 1 \\ 1 & 0 & \frac{1}{2} \end{pmatrix}$$

$$\dot{x}_i = x_i \sum_j (H_{ij} - H_{ji}) x_j = x_i \sum_j P_{ij} x_j$$
payoff of a symmetric game

$$P = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \qquad H = \begin{pmatrix} \frac{1}{2} & 1 & 0 \\ 0 & \frac{1}{2} & 1 \\ 1 & 0 & \frac{1}{2} \end{pmatrix}$$

0

$$\dot{x}_i = x_i \sum_{jk} P_{ijk} x_j x_k$$

 $\dot{x}_i = x_i \sum_{jk} P_{ijk} x_j x_k$

Same form proposed for >2 players versions of rock-paper-scissor

Neutral theory

in the case of equal physiological rates $f_i = d_i = 1$ and equal competition abilities $H_{ii} = H_{ji} = 1/2$

Multi-player hypertournaments in the case of equal physiological rates $f_i = d_i = 1$ and arbitrary $H_{ij} = 1 - H_{ji}$

Full model

Arbitrary physiological rates f_i , d_i and $H_{ij} = 1 - H_{ji}$

Neutral theory

in the case of equal physiological rates $f_i = d_i = 1$ and equal competition abilities $H_{ii} = H_{ii} = 1/2$

Multi-player hypertournaments in the case of equal physiological rates $f_i = d_i = 1$ and arbitrary $H_{ij} = 1 - H_{ji}$

Full model

Arbitrary physiological rates f_i , d_i and $H_{ij} = 1 - H_{ji}$

This model generates high biodiversity

For equal physiological rates, the fixed point is the same!

Neutral cycles for pairwise interactions

(if a fixed point exists)

Always globally stable fixed point

(if a fixed point exists)

Always globally stable fixed point

(if a fixed point exists)

t

Neutral theory

in the case of equal physiological rates $f_i = d_i = 1$ and equal competition abilities $H_{ij} = H_{ji} = 1/2$

Multi-player hypertournaments in the case of equal physiological rates f_i=d_i =1 and arbitrary H_{ij} =1- H_{ji}

Full model

Arbitrary physiological rates f_i , d_i and $H_{ij} = 1 - H_{ji}$

Stable coexistence is possible w/o fine-tuning

Summary of results for higher-order interactions

Arbitrary H_{ij} and equal physiological rates

Globally stable fixed point [this work]

Random H_{ij}: on average half of the species coexist [this work + Brandl, working paper 2015]

Arbitrary H_{ij} and arbitrary physiological rates

Fixed points still exist and they can be stable [this work]

What we do not like about neutral theory

Sensitivity to the hypothesis of ecological equivalence

Stability is only neutral

No interactions

1. Closed systems (no migration/speciation) Deterministic analysis

2.

Closed systems (no migration/speciation) Effect of stochasticity

3.

Open systems (migration/speciation) Compare to neutral theory prediction

Stochasticity does not change the message

Time to extinction depends on stability

1. Closed systems (no migration/speciation) Deterministic analysis

2.

Closed systems (no migration/speciation) Effect of stochasticity

3.

Open systems (migration/speciation) Compare to neutral theory prediction

We recover neutral theory prediction on relative species abundances

We recover neutral theory prediction on relative species abundances

Better prediction on species ages

Three things I am confused about

#0 (the limiting factor)

Observables What should we measure?

Entropy vs Complexity Is ecosystem complexity growing? Or not? Is there a direction?

Scales

[time, space, #individuals, diversity,...] At what scales do we see ir(reversible) processes?

Reversibility and reproducibility Are reversible processes *less* reproducible?

Acknowledgments

Higher-order interactions S. Allesina M. Michalska-Smith G. Barabás

Funding

thank you!