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Data driven network and
dynamic network ID:
brain structure/function
relationships, state
switching, learning,
aging, machine learning
for high resolution
medical imaging.

Mechanistic models:
cellular materials,
adaptive immunity,
microbiome: dynamics,
robustness, co-
evolution, population
structure, dynamic
response

Technological/social
networks, natural
disasters: dynamic
resource allocation
protocols, collective
decision making,
information diffusion




Why am | here today?

Jean Carlson, Department of Physics

Robustness Tradeoffs, Dynamics, and Multi-scale Modeling:
Host Pathogen (co)Adaptation, Diversification, and Age
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and applications:
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cellular materials,
adaptive immunity,
microbiome: dynamics,
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Technological/social
networks, natural
disasters: dynamic
resource allocation
protocols, collective
decision making,
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Robustness and Fragility in the Adaptive Immune System:
Immunosenescence and host-pathogen coevolution

Jean Carlson, Sean Stromberg,
Kimberly Schlesinger, UCSB Physics

http://www.physics.ucsb.edu/~complex
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Aging in the Adaptive Immune System

The immune system has resource
constraints in the total number of
cells that compose the system. It
also allocates its resources to be
more efficient at fighting diseases it
has already encountered.

Robust to uncertainties
-- that are common,
-- the system was designed for, or
-- has evolved to handle,
...yet fragile to unknown
-- Or rare events (HOT!)

Focus on consequences of adaptive
mechanisms, rather than breakdown
of cellular function.




EA\pproach: J

*Dynamical models of immune system behavior based

on the mechanics of individual cell types.

*The models are used to:
*Understand how the immune system solves problems

*Predict failures that will result from these problem solving mechanisms
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All of these reflect different fragilities associated with a dynamic (arrow of time),
systems level view of adaptive mechanisms that evolved for robustness
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*Dynamical models of immune system behavior based
on the mechanics of individual cell types.

*The models are used to:
*Understand how the immune system solves problems
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Cells in Immune Response
Model
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Stromberg and Carlson, Robustness and Fragility in Immunosenescence.
PLOS Comp. Bio. 2, €160 (2006).



High Affinity

Shape Space

Because the lymphocyte population is so
diverse we need a method to organize the
distribution of lymphocyte affinities for
different antigens

*\We use the generalized shape space of
Oster and Perelson (1979)

—Lymphocyte(¥) and antigen(z)
binding characteristics are described pFeragr = oy
by vectors in the shape space m “ m

Low Affinity

—The binding affinity is a decaying bl A Sk
function of the distance between s % #;}

vectors: s
Y(Z,Y) = ’7""7716_(1_?1) /2

(shape, charge, size,
hydrophobicity...)



Reactions in Immune
Response

*;x‘ Antigen Growth
0 » Coupled to pathogen division
ﬁ — pled to pathog
Reaction Rate: 34
Antigen Capture
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Lymphocyte Stimulation
* Both Nand M

* Divide into £ and M
* E with fraction f, M with fraction 1-f.
+ Affinity Dependent
o« ¥ 5 F
Reaction Rate: auyFF*(M+N)

Antigen Removal
+ Affinity dependent

Reaction Rate: y£A4
Effector Cell Death

Reaction Rate: 0 F




Immune Response Equations
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LLoss

« To quantify the severity of an
infection (Loss) we take the

: . Two exposures, same infection
integral of the antigen pulse

250

* This is proportional to the 200
amount of damage the
infection will do to tissues of
the body and to the amount of 2
toxin that would be released »

|
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150

ation Size

L. % }02) T Is0 200
* Repeat of the same or similar Time

Infection results in less severe

response due to long-lived

memory cells



*The cells that were stimulated by an antigen and aided in its removal, remain as
long lived memory cells.

*Other cells are called naive, are short lived and are constantly recycled.

*The sum of memory and naive is kept constant.

Pre-Inoculation Post-Response

N B~ O @

Population Size

1e+011
1e+009

1e+007

Losses

100000

1000

*The Naive for Memory tradeoff corresponds to a fast secondary response with a cost
of more vulnerability in outlying areas, “Robust Yet Fragile,” a key feature of HOT

(Carlson and Doyle).



Overspecialization with Age
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Robust Yet Fragile: Adaptation, Complexity, and Age

ﬁmmunosenescence: J |
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environment.

*Fragility:With resource
constraints (#cells) it over-
adapts and has few resources
for new diseases with age.
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Mutation, diversity, and immunosurveilance:
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* Host/pathogen co-evolution in shape
space (1d)

® Adaptive immune system: same as
before (naive, effector, memory)

® Add pathogen mutation

Consider single infection

® Infection outcomes: elimination,
chronic infection, escape
® Diversity of responses; average result

depends on specificity and mutation
rate



Dynamics of chronic infections: Host-pathogen co-evolution

leads to resource thinning and sudden pathogen escape
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Cellular population dynamics in adaptive immunity:

« The immune system is a complex dynamical system with cellular binding
specificity and adaptation on observable time scales
* Robustness mechanisms give rise to immune system vulnerabilities
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More recently, my group’s work in this area
(population dynamics and ecological modeling)
has focused on the microbiome: data-driven
interaction network between microbes



Microbiome: two models systems
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Will Ludington: Carnegie Institute for Science
http://mcb.berkeley.edu/labs/ludington/

Mouse microbiome:
ecological modeling,
antibiotics,

C Diff infection, FMT

(Buffie and Pamer;
Stein, et al)

Fly Microbiome:

5 microbial species,
Gut diversity: impact
on aging, health
reproduction, etc




Mouse Microbiome:

« Use ecological model to reverse
engineer diversity of outcomes

Barnesiella

undefined genus of Lachnospiraceae
unclassified Lachnospiraceae

Other

Blautia

undefined genus of unclassified Mollicutes

Akkermansia
Coprobacillus

undefined genus of Enterobacteriaceae

Enterococcus
Clostridium difficile

\
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Data-driven GLV model
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Mouse Microbiome:

e Start with C Diff fragile state -
* Simulate fecal microbial transplants | (ac&7, \\(x\},,"\(xﬁ@’

* Importance of timing!

== Barnesi

ella wwssn - Akkermansia

mmssm undefined genus of Lachnospiraceae mssss - Coprobacillus

= nclassified Lachnospiraceae

s Other
Blautia

messs - Enterococcus
mmmmm  Clostridium difficile

=== undefined genus of unclassified Mollicutes

s undefined genus of Enterobacteriaceae

log(# microbes)

day 7 transplant = CDI
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Simulate FMT with varying delays
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Timing plays a key role in
effectiveness of bacteriotherapy




Mouse Microbiome:

* Results for FMT timing are captured g
by a low dimensional steady state WE

reduction (SSR)

e aift—
—» NP D

* Analytically tractable and predictive
* SSR generalizes to other systems

N
NN

2d dynamical system:
healthy and diseased
steady states (SS)

0" time since RX (1/)

Time trajectories from
initiatial condition
to SS with FMT shows

tradeoffs in size vs. delay
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Captures behavior
of original model




Fly Microbiome:

* Experiments correlate all combinations
of 5 microbes with host phenotypes

* Microbiome co-evolves with host;
Interactions shape host fithess
* Microbiome induces a life history tradeoff

between lifespan

and fecundity
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Median survival of female flies (days)

@ Lactobacillus plantarum
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35 40 45 50 55
Median survival of female flies (days)

GF to gnotobiotic

A: Experimental design
B: diversity decreases

lifespan

C: High fecundity correlated

with shorter lifespan

D: The lifespan-fecundity

tradeoff can be broken
by putting flies on
antibiotics after peak
reproduction




Fly Microbiome:

* Microbiome diversity impacts host
physiology

Mean fecundity (offspring/day/female)

Mean time to death (days)
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A: Variation in fecundity
decreases with diversity

B: Development time
decreases with diversity

C: Lifespan decreases with

diversity

D: Fitness (Leslie matrix:
population growth rate)
increases with diversity
(combining A-C)




Fly Microbiome:
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* Microbiome interactions stabilize

diversity in the fly gut

A: Diversity maintained better in fly gut
than in liquid coculture

B: Pairwise correlation between
species for 2-5 species shows more
negative correlation with higher
diversity

C: More negative interactions (red) for
higher diversity also obtained from a
gLV fit (Left: 1-2 species; Right: 3-5
species)




Interests going forward

 Robust yet fragile: Constraints & tradeoffs lead to vulnerability

« Diversity of outcomes: stochasticity, components, history

« Optimal interventions: tradeoffs in intensity and timing (SSR)

* Multiscale/multisystem: molecular and systems level;
microbiome and immune ¢
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A few comments on data and individual differences:

Data is a primary limitation!
* What are the primary sources of
variability in the population? e e K KR

ﬂje
ver is expected to double | or of

* What are the relationships between
performance and age?

* Are there precursors to fragility?

* Can we predict which individuals/systems .
will recover and which will collapse? OWBAL VRO T

* Why therapies work on some individuals ¢ |
and fail on others?

* Can we identify ways in which I
individuals/therapies are malleable? e gy e i

about ageing and older people

~ > EVERY QLDER PERSON IS DIFFERENT

Some have the level of Some require full time assistance
functioning of a 30 year old. for basic everyday tasks.

100

80

60

flignment of health systems
to the needs of older people

Cancer Immunotherapy:
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