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relevant to questions about social behavior and health/fitness-related 
traits. striking observations (not from above fields):
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eFigure 8. Race- and Ethnicity-Adjusted Life Expectancy vs. Income in Dollars, 2001-2014 

 
Figure plots race- and ethnicity-adjusted life expectancies by percentile as in Figure 2 vs. the mean level of household income 
(measured at ages 38-61) in each percentile bin. The vertical height of each bar depicts the 95% confidence interval. The top income 
percentile is omitted for scaling purposes. The mean household income for men in the top percentile is $1.98 million and their 
expected age at death is 87.3 years. The mean household income for women in the top percentile is $1.92 million and their expected 
age at death is 88.9 years. Men and women with household incomes of $25,000 are in the 19th and 21st income percentiles, 
respectively. Men and women are in percentiles 40 and 45 at $50,000 in household income, percentiles 59 and 62 with $75,000 in 
household income, percentiles 73 and 75 with $100,000 in household income, and percentiles 93 and 94 with $200,000 in household 
income, respectively. 
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reduction through formalized social interventions [199]. While the
evidence is mixed [2,6], it should be noted that most social support
interventions evaluated in the literature thus far are based on
support provided from strangers; in contrast, evidence provided in
this meta-analysis is based almost entirely on naturally occurring
social relationships. Moreover, our analyses suggest that received
support is less predictive of mortality than social integration
(Table 4). Therefore, facilitating patient use of naturally occurring
social relations and community-based interventions may be more
successful than providing social support through hired personnel,
except in cases in which patient social relations appear to be
detrimental or absent. Multifaceted community-based interven-
tions may have a number of advantages because such interventions
are socially grounded and include a broad cross-section of the
public. Public policy initiatives need not be limited to those
deemed ‘‘high risk’’ or those who have already developed a health
condition but could potentially include low- and moderate-risk
individuals earlier in the risk trajectory [200]. Overall, given the
significant increase in rate of survival (not to mention quality of life
factors), the results of this meta-analysis are sufficiently compelling
to promote further research aimed at designing and evaluating
interventions that explicitly account for social relationship factors
across levels of health care (prevention, evaluation, treatment
compliance, rehabilitation, etc.).

Conclusion
Data across 308,849 individuals, followed for an average of 7.5

years, indicate that individuals with adequate social relationships
have a 50% greater likelihood of survival compared to those with
poor or insufficient social relationships. The magnitude of this

effect is comparable with quitting smoking and it exceeds many
well-known risk factors for mortality (e.g., obesity, physical
inactivity). These findings also reveal significant variability in the
predictive utility of social relationship variables, with multidimen-
sional assessments of social integration being optimal when
assessing an individual’s risk for mortality and evidence that social
isolation has a similar influence on mortality to other measures of
social relationships. The overall effect remained consistent across a
number of factors, including age, sex, initial health status, follow-
up period, and cause of death, suggesting that the association
between social relationships and mortality may be general, and
efforts to reduce risk should not be isolated to subgroups such as
the elderly.

To draw a parallel, many decades ago high mortality rates were
observed among infants in custodial care (i.e., orphanages), even
when controlling for pre-existing health conditions and medical
treatment [201–204]. Lack of human contact predicted mortality.
The medical profession was stunned to learn that infants would die
without social interaction. This single finding, so simplistic in
hindsight, was responsible for changes in practice and policy that
markedly decreased mortality rates in custodial care settings.
Contemporary medicine could similarly benefit from acknowledg-
ing the data: Social relationships influence the health outcomes of
adults.

Physicians, health professionals, educators, and the public
media take risk factors such as smoking, diet, and exercise
seriously; the data presented here make a compelling case for
social relationship factors to be added to that list. With such
recognition, medical evaluations and screenings could routinely
include variables of social well-being; medical care could

Figure 6. Comparison of odds (lnOR) of decreased mortality across several conditions associated with mortality. Note: Effect size of
zero indicates no effect. The effect sizes were estimated from meta analyses: ; A = Shavelle, Paculdo, Strauss, and Kush, 2008 [205]; B = Critchley and
Capewell, 2003 [206]; C = Holman, English, Milne, and Winter, 1996 [207]; D = Fine, Smith, Carson, Meffe, Sankey, Weissfeld, Detsky, and Kapoor, 1994
[208]; E = Taylor, Brown, Ebrahim, Jollife, Noorani, Rees et al., 2004 [209]; F, G = Katzmarzyk, Janssen, and Ardern, 2003 [210]; H = Insua, Sacks, Lau, Lau,
Reitman, Pagano, and Chalmers, 1994 [211]; I = Schwartz, 1994 [212].
doi:10.1371/journal.pmed.1000316.g006
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“we have been accustomed to think…in terms [of] nutritional status, fatigue, 
overwork or the like. I would suggest…that there is another category of 
environmental factors capable of producing profound effects on host 

susceptibility…to disease…and that is the presence of other members of the 
same species, or more generally, certain aspects of the social environment” 

-Cassel (1976)

“…social factors such as socioeconomic status and social support are likely 
‘fundamental causes’ of disease that…affect multiple disease outcomes 

through multiple mechanisms” 
-Link and Phelan (1995); Phelan, Link, and Tehranifar (2010)
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Variation in the social environment is a fundamental component
of many vertebrate societies. In humans and other primates,
adverse social environments often translate into lasting physio-
logical costs. The biological mechanisms associated with these
effects are therefore of great interest, both for understanding the
evolutionary impacts of social behavior and in the context of
human health. However, large gaps remain in our understanding
of the mechanisms that mediate these effects at the molecular
level. Here we addressed these questions by leveraging the power
of an experimental system that consisted of 10 social groups of
female macaques, in which each individual’s social status (i.e.,
dominance rank) could be experimentally controlled. Using this
paradigm, we show that dominance rank results in a widespread,
yet plastic, imprint on gene regulation, such that peripheral blood
mononuclear cell gene expression data alone predict social status
with 80% accuracy. We investigated the mechanistic basis of these
effects using cell type-specific gene expression profiling and glu-
cocorticoid resistance assays, which together contributed to rank
effects on gene expression levels for 694 (70%) of the 987 rank-
related genes. We also explored the possible contribution of DNA
methylation levels to these effects, and identified global associa-
tions between dominance rank and methylation profiles that sug-
gest epigenetic flexibility in response to status-related behavioral
cues. Together, these results illuminate the importance of the mo-
lecular response to social conditions, particularly in the immune
system, and demonstrate a key role for gene regulation in linking
the social environment to individual physiology.

inflammation | social gradient | differential gene expression |
sociogenomics

The social organization of many group-living mammals, in-
cluding many primates, is marked by readily recognizable

differences in the social environments experienced by individual
group members. The causes and consequences of variation in the
social environment have been of long-standing interest in be-
havioral ecology and evolution, and strong evidence indicates the
importance of the social environment in human health as well. In
particular, a large body of work in humans and nonhuman pri-
mates indicates that adverse social conditions can have impor-
tant consequences, both for disease susceptibility in the short
term (1–3) and for evolutionarily important parameters such as
fertility and survival over the long term (4–7). Characterizing the
mechanisms underlying these effects is therefore a priority not
only in the study of evolution and behavior but also for un-
derstanding the protective and pathological effects of the social
environment in our own lives.
Social status is one of the most important predictors of the

quality of an individual’s social environment. Consequently, social
status has been intensively studied in nonhuman primates, in-
cluding as a model for the effects of social stress and socioeco-
nomic status (SES) in humans (reviewed in ref. 8). Social status in
nonhuman primates is encoded by dominance rank, which defines
which individuals yield to other individuals during competitive
encounters. In settings in which hierarchies are strongly enforced

or subordinates have little social support, low dominance rank can
lead to chronic stress, immune compromise, and reproductive
dysregulation (3, 9). In socially housed captive female rhesus
macaques (Macaca mulatta), for instance, the physiological effects
of dominance rank include changes in glucocorticoid (GC) and
sex steroid hormone regulation (10), serotonergic and dopami-
nergic signaling (11), and lymphocyte counts and proliferation
rates (12). Interestingly, many of these rank-associated effects are
detectable even in the absence of rank-related asymmetries in
access to resources, suggesting that the stress of social subordinacy
alone can trigger a physiological response. This relationship ech-
oes the effects of social stress and SES in humans, in which ob-
served “social gradients” in disease risk remain in large part
unexplained by resource access alone (8, 13, 14).
Much remains unresolved, however, about the physical inter-

mediates that link the social environment with immunological
and physiological changes, especially on the molecular level. In
particular, we know little about how social status impacts gene
regulation, either in primates or in mammals more generally,
although several lines of evidence suggest that these effects may
be important. First, the potential for social regulation of gene
expression is supported by correlations between social integra-
tion, early-life SES, and gene expression variation in humans
(15–17). Second, gene–environment interactions identified in
humans and nonhuman primates frequently involve allelic var-
iants that act via altering gene expression levels (e.g., 18, 19).
Finally, social hierarchies are known to influence gene expres-
sion in other organisms. Dominance rank ascendancy in social
cichlids, for example, is associated with strong induction of the
transcription factor egr1 and its downstream target, gonadotro-
pin-releasing hormone (20). Similarly, in honey bees, genome-
wide gene expression profiles strongly differentiate queen bees
from worker castes, sterile workers from reproductive workers,
and active foragers from hive workers (21, 22). Although the
nature of social hierarchies differs between insects, fish, and
primates, these lines of evidence suggest that social status might
also directly influence gene regulation in primates. Further, the
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easy measurement(s) of the immune system with and without stimulation.   In order to ensure reliable 

data, the system must also be reproducible.

The TruCulture System is designed to capture immune cell activity without introducing sample 

collection and manipulation variables.  The system employs a single, self-contained tube for whole 

blood collection and culture.

Things should be made as simple as possible, but not any simpler
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learning, honeybee nurse/forager transition, and cichlid alpha 
male development (Robinson, Fernald, & Clayton, 2008). In 
each of these lines of research, analyses of socially induced 
transcriptional remodeling demonstrated a critical role for the 
central nervous system in transducing social information into 
changes in hormone and neurotransmitter dynamics that in 
turn modulate gene expression changes throughout the body, 
including in the brain (Fernald & Maruska, 2012; Robinson, 
Grozinger, & Whitfield, 2005; Robinson et al., 2008).

As illustrated in Figure 3a, human research has begun to 
identify broadly similar mechanisms, with central nervous 
system–mediated subjective perceptions of the social environ-
ment as safe versus threatening playing a key role in activating 

dynamics such as the leukocyte CTRA (Slavich, Way, et al., 
2010). In studies of social isolation, for example, CTRA tran-
scripts have been linked primarily to individuals’ subjective 
experience of social isolation or loneliness (i.e., a view of the 
social world as generally hostile and unsupportive; Cacioppo 
& Hawkley, 2009), rather than to “objective” parameters of 
social connection, such as individuals’ social network size or 
marital status (Cole et al., 2007; Cole et al., 2011). Analyses of 
socioeconomic-related differences in gene expression have 
revealed similar effects, with leukocyte transcriptional altera-
tions being linked more closely to peoples’ general belief that 
the social world is a threatening or inhospitable place than to 
objective indices of social status, such as household income or 

Fig. 3. Human social signal transduction. Social signal transduction is the process by which subjectively perceived social 
conditions and historically and developmentally derived anticipatory worries alter genomewide transcriptional dynamics.  
(a) Social-environmental threats are neurocognitively appraised and converted into changing patterns of activity in the 
sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis. Neuroeffector molecules from these 
systems engage specific gene transcriptional programs in differing target cells. In leukocytes, for example, SNS and HPA signaling 
suppress innate antiviral genes (e.g., IFNA, IFNB), whereas SNS signaling activates, and HPA signaling inhibits, proinflammatory 
cytokine genes (e.g., IL1B, IL6, IL8, TNF). (b) These processes can also be depicted conceptually, highlighting the fact that 
social experiences can become biologically embedded in at least two ways. First, internal physiologic recursion can occur, given 
that the genes targeted by social signal transduction pathways encode the molecules that mediate social signal transduction 
(e.g., receptors, intracellular signaling molecules, transcription factors, and growth factors). This recursive process propagates 
experienced-induced transcriptional alterations forward in time by sensitizing signal transduction pathways to the external 
social environment. Second, external social recursion can occur, given that social signal transduction can modulate genes involved 
in the regulation of social behavior (e.g., defensive responses to perceived threat). This recursive process takes place when 
conspecifics in the surrounding environment change their behavior in response to an individual’s altered actions, locking 
the individuals in a reciprocal feedback system. These two pathways give social-environmental experiences the ability to 
influence the basal cellular transcriptome for weeks and years after the initial environmental impetus has passed. ACTH = 
adrenocorticotropin hormone; ADRB2 = β2-adrenergic receptor; CRH = corticotrophin releasing hormone; PRR = pattern 
recognition receptor.
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rank, age, group size, season, or feeding regime significantly
predicted variation in healing rates among males, while control-
ling for differences in study period and the type of illness or in-
jury. Again, we found no evidence that the costs of high rank slow
the healing process. Instead, healing rates were slower for low-
ranking males (Table 1). Indeed, at any given point in time, the
top-ranked males were three times more likely than the lowest-
ranked males to recover from an injury or illness. Because the
immune processes involved in recovering from infectious disease
differ from those involved in wound healing, we repeated this
analysis using only the 423 injuries in our data. Here again, high-
ranking males recovered from injuries more quickly than low-
ranking males (Table S2).
In male baboons, age and rank are correlated; therefore slower

recovery rates in low-ranking males could be explained by natu-
ral, age-related declines in immune function (50). However, we
found that rank was a stronger predictor of healing rates than
age. Specifically, although healing rates declined significantly with
age in a model without rank (Table S3), when we included both
rank and age in the model, rank absorbed most of the variance
explained by age, and age no longer was a significant predictor of
healing rates (Table S4).
Our best model of male recovery rates (Table 1) indicated an

effect of group size, such that males in large groups recovered
more rapidly than males in small groups. The effect of dominance
rank on healing rates was still significant after group size was
removed from the model (χ2 = 8.16, P = 0.0043) (Table S5), but
the reverse was not true; group size did not significantly predict
healing rates in the absence of dominance rank (χ2 = 2.42, P =
0.1196) (Table S6). Consequently, we added an interaction term
(dominance rank × group size) to the model. The interaction
term was significant (χ2 = 4.81, P = 0.0283) (Table S7); High-
ranking males experienced the same healing rates, regardless of
group size, but low-ranking males healed faster in larger groups.
However, the sample size of injuries and illnesses observed in
low-ranking males in small groups was small (12 injuries and
illnesses occurred in males occupying ranks lower than 8 in
groups with fewer than 30 adults), and more work is needed to
understand the effects of group size on healing rates.

Alpha Males Compared with Other High- and Low-Ranking Males.
Among high-ranking males, alpha males arguably experience the
highest energetic and endocrine costs of high rank. Glucocorticoid

levels are significantly higher in alpha males than in beta (second-
ranked) males and instead resemble those of low-ranking males
(males occupying ranks lower than 8, in groups with 9–17 adult
males) (45). Moreover, alpha males spend the most time in en-
ergetically costly consortships, compared with beta males and
other high-ranking males, and also should experience high costs of
aggressive conflict (45). Given these potential costs of alpha sta-
tus, we tested whether alpha males experienced suppressed im-
mune function relative to beta males, all other high-ranking males
(ranks 2–8), and low-ranking males (ranks lower than 8). We
found no evidence for this hypothesis; although there were no
significant differences in healing rates between alpha and beta
males, alpha males healed significantly faster than all other high-
ranking males and than low-ranking males (Table 2). This result
indicates that the correlates of alpha status—high testosterone,
high reproductive effort, and high glucocorticoids—did not
meaningfully suppress immune function in alpha males and that
alpha males, in fact, may have had enhanced immune function
relative to other males.

Discussion
Social status can have striking effects on mortality and disease
risk, and discovering which factors influence status-related dif-
ferences in health is of major scientific interest (1, 12, 58). In
male vertebrates, several factors could explain status-related
differences in health and immune function, including differences
in physical condition, stress, reproductive effort, testosterone,
and age (5). Although there is strong evidence to support each of
these factors individually (3, 5, 15, 50, 59), their relative impor-
tance in wild populations is not well understood. We found no
evidence that immunosuppressive correlates of high rank in male
baboons, such as high reproductive effort and testosterone (43,
45, 60), increased the incidence of illness or slowed recovery from
illnesses or injuries. Instead, high-ranking male baboons were less
likely to exhibit signs of illness and recovered more rapidly from
injuries and illnesses compared with low-ranking males. More-
over, alpha males, who experience the highest testosterone and
energetic costs, as well as high glucocorticoids (45), healed more
quickly than other high-ranking and low-ranking males. These
results support the idea that there is evolutionary flexibility in the
relationships between hormones and important traits such as
immune function or reproduction (22, 23, 35). Moreover, they
help clarify how social status influences health in nonhuman
primates: Correlates of low-rank, such as age, chronic stress, and
poor physical condition, are associated with higher disease risk
and slow healing, whereas the elevated testosterone and intense
reproductive effort linked to high rank are associated with lower
disease risk and rapid recovery.
These results are somewhat surprising in the context of other

studies on status-related differences in health in male vertebrates,
including research on baboons in Amboseli (48, 49). In several
species, testosterone has been proposed to mediate the tradeoff
between reproductive effort, survival, and immune function (17,
61). Indeed there is strong evidence from laboratory-based
studies that testosterone suppresses aspects of immune function,
including wound healing (62). Wild studies also support the im-
munosuppressive effects of testosterone, but the results vary

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 100 200 300 400 

High-ranking males 
Low-ranking males 

Time in days 

Pr
op

or
tio

n 
of

 in
ju

rie
s 

an
d 

ill
ne

ss
es

 fa
ili

ng
 to

 h
ea

l 

Fig. 1. Survival curves depicting the proportion of injuries and illnesses in
adult male baboons failing to heal as a function of time in days. The black
line indicates injuries and illnesses observed in high-ranking males (ranks 1–
8; n = 380), the gray line indicates injuries and illnesses in low-ranking males
(ranks lower than 8; n = 68). Error bars indicate SE. High-ranking males
healed significantly more quickly than low-ranking males (log-rank test: χ2 =
4.37, P = 0.0365).

Table 1. The best-supported proportional hazards model of
male healing rates as determined by likelihood ratio tests

Source of variation
Hazard
ratio DF χ2 P

Time period (pre- or post-1991) 1.80 1 25.08 < 0.0001
Injury or illness type — 8 17.29 0.0444
Dominance rank 3.07 1 14.44 0.0001
Group size 2.28 1 8.47 0.0036

n = 448; whole model χ2 = 59.45; DF = 11, P < 0.0001, log likelihood =
1854.311.
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• How does the social environment-immune relationship vary 
depending on the nature of hierarchies, the local environment, 
or individual characteristics?


• How stable are the effects of social interactions over time? 
How does stability depend on the outcome measure?


• What is the adaptive value (if any) of these responses?

• How does social history interact with exposure history (and 
age)? 


• To what degree do these interactions explain increased 
variance by chronological age?



Thanks!
BABOONS:
Susan Alberts (Duke)
Jeanne Altmann (Princeton)
Beth Archie (Notre Dame)

Raphael Mututua
Serah Sayialel
Kinyua Warutere
Tim Wango
Vivian Oudu  
Mercy Akinyi
Ruth Nyakundi
Institute of Primate Research
Kenya Wildlife Service

MACAQUES:
Luis Barreiro (Montreal/U Chicago)
Mark Wilson (Emory)
Joaquin Sanz Remon (Montreal)
Vasiliki Michopoulos (Emory)
Jordan Kohn (Emory)
Zach Johnson (now Illumina)
Jessica Brinkworth (now Illinois)
J.C. Grenier (Montreal)
Roger Pique-Regi (Wayne State)

Yerkes NPRC staff
Ian Cummings/Duke DHVI FACS core

TUNG LAB:
Noah Snyder-
Mackler (now UW)
Amanda Lea (now 
Princeton)
Rachel Johnston
Noah Simons
Tauras Vilgalys
Jordan Anderson
Arielle Fogel
Shauna Morrow

Amanda Shaver
Mike Yuan
Tawni Voyles
Tina Del Carpio
Matt Kim
Reena Debray
Meghana Rao
Yingying Zhang

The Social Determinants of Health Working Group 
Robbie Burger
Lauren Gaydosh (UNC)

Noah Snyder-
Mackler Amanda Lea

Jenny Tung


