Developing Dynamical Indicators of Resilience Based on Physiologic Time Series in Older Adults

Sanne M.W. Gijzel1,2, Jerrald Rector1, Fokke van Meulen1, Ingrid A. van de Leemput2, Marten Scheffer2, Marcel G.M. Olde Rikkert1, René J.F. Melis1

1 Department of Geriatrics, Radboud University Medical Center, Nijmegen, the Netherlands

2 Environmental Sciences, Wageningen University, Wageningen, the Netherlands;

Sanne.Gijzel@radboudumc.nl

©Kim Wrang & Lisa Bregneager
Quantifying resilience

- Predict how patients will recover when health is challenged by disease or treatment

- Physical resilience = an individual’s ability to resist functional decline or recover physical health following a stressor [1]

- Dynamical phenomena require dynamic tests

- Complement static indicators of reserve capacities or cumulative damage

[1] Whitson et al. 2015 JGMS
Dynamical measurements

Two types:

1) Challenge test: perturb the body and measure recovery time

[2] Lagro et al. 2014 JGMS
Dynamical measurements

Two types:

1) Challenge test: perturb the body and measure recovery time

2) Monitoring of *natural* perturbations: zoom in on “microdynamics”
Low resilience \rightarrow critical slowing down

- Generic theory of dynamical systems [3]
- Rate of change around the equilibrium decreases
- Changes in pattern of fluctuations of parameters over time

Low resilience → critical slowing down

- Generic theory of dynamical systems [3]
- Rate of change around the equilibrium decreases
- Changes in pattern of fluctuations of parameters over time

Dynamical indicators of resilience (1+2)

Critical slowing down typically causes an increase in variance + temporal autocorrelation of fluctuations of a parameter measured over time [3]

Dynamical indicators of resilience (3)

- Different subsystems become more mutually dependent as they lose resilience
- Deviations of parameters become more cross-correlated [4,5]
- All three indicators of resilience evidenced in mood dynamics [6,7]

DIORs in the older person

Self-rated health [8]

Critical slowing down as early warning for the onset and termination of depression

Ingrid A. van de Leemput1,2, Marieke Wichers1, Angélique O. J. Cramer1, Denny Borsboom2, Francis Tuylsinka2, Peter Kuppens2, Egbert H. van Nes1, Wolfgang Viechtbauer2, Erik J. Gilby1, Steven H. Aggen1, Catherine Derom1, Nele Jacobs3, Kenneth S. Kendler4,5, Han L. J. van der Maas1, Michael C. Neale1, Frenk Peeters1, Evert Thiery1, Peter Zacher2, and Marten Scheffer1

*Aquatic Ecology and Water Quality Management, Wageningen University, 6700 AA, Wageningen, The Netherlands. 2Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands. 3Department of Psychology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands. 4Vanderbilt University, Nashville, TN, USA. 5Vanderbilt University, Nashville, TN, USA.

Mood [6]

Postural balance [9]

Dynamical Indicators of Resilience in Postural Balance Time Series Are Related to Successful Aging in High-Functioning Older Adults

Sanne M. W. Gijzel, MD,1,2 Ingrid A. van de Leemput, PhD,2 Marten Scheffer, PhD,2 Geert E. A. van Bon, MSc,3 Vivian Weerdesteyn, PhD,4 Thijs M. H. Eijsvogels, PhD,4 Maria T. E. Hopman, MD, PhD,4 Marcel G. M. Olde Rikkert, MD, PhD,3 and René J. F. Melis, MD, PhD1

1Department of Geriatrics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. 2Department of Environmental Sciences, Wageningen University, the Netherlands. 3Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands. 4Department of Physiology, Radboud University Medical Center, Nijmegen, the Netherlands.

Collecting time series data for DIORs

Time-series measures showing short- and long-term fluctuations in levels of a given function
- Heart rate, blood pressure, balance [10]
- Body temperature
- Attention (reaction times)

- Self-rated mood / anxiety / wellbeing / health / fatigue → Mental

Keep the theory in mind!

Example: reaction speed time series

80 trials in 5 minutes

Time series is a non-parametric distribution with large outliers

No clear equilibrium / basin of attraction!
Analyzing time series data for DIORs

- **Step 1**: Exploration of time series
 - \(\rightarrow\) Visualize data with plots
 - \(\rightarrow\) Data in context of system and responses of interest

- **Step 2**: Pre-processing of data: filtering, smoothing, detrending, etc.
 - Driven by knowledge of the system of interest
 - Driven by the data

- **Step 3**: Calculation of DIORs
 - \(\rightarrow\) Variance: standard deviation
 - \(\rightarrow\) Temporal autocorrelation: choose a lag?
 - \(\rightarrow\) Cross-correlation: Pearson’s correlation

- **Step 4**: Analyze relationship with relevant participant characteristics

Main challenges
Analyzing DIORs in time series

• **Step 1: Exploration of time series**
 → Visualize data with plots
 → Data in context of system and responses of interest
Analyzing DIORs in time series

- **Step 2**: Pre-processing of data: filtering, smoothing, detrending, etc.
 - Driven by knowledge of the system of interest
 - Driven by the data

Smoothing function
- Moving average
- Gaussian kernel
- LOESS

[Graph showing heart rate (beats/min) over time with annotations for smoothing functions and a highlighted section indicating a 15-minute timeframe]

Dakos et al. 2008 PNAS
Analyzing DIORs in time series

- **Step 2**: Pre-processing of data: filtering, smoothing, detrending, etc.
 - Driven by knowledge of the system of interest
 - Driven by the data

Detrending
- Choose smoothing function
- Choose window size
- Subtract smooth time series
- Work with residuals

[Graph showing detrending process]

Dakos et al. 2008 PNAS
Analyzing DIORs in time series

• Step 3: Calculation of DIORs
 → Variance: standard deviation
 → Temporal autocorrelation: choose a lag
 → Cross-correlation: Pearson’s correlation

Choosing a lag for oversampled time series
- Shift the time series a certain number of data points
Example: heart rate temporal autocorrelation
Example: heart rate temporal autocorrelation
Analyzing DIORs in time series

- **Step 3: Calculation of DIORs**
 - Variance: standard deviation
 - Temporal autocorrelation: choose a lag
 - Cross-correlation: Pearson’s correlation

Choosing a lag for oversampled time series
- Shift the time series a certain number of data points
- What is the characteristic response rate of the system?
- Within the range of interest, compare multiple lags with an autocorrelation function graph
Example: temporal autocorrelation graphs

Preliminary results!

Theory of DIORs – Data collection – Analysis – Results interpretation – Discussion
Analyzing DIORs in time series

Step 2: Pre-processing of data: filtering, smoothing, detrending, etc.

- Driven by knowledge of the system of interest
- Driven by the data

Step 3: Calculation of DIORs

- Variance: standard deviation
- Temporal autocorrelation: choose a lag
- Cross-correlation: Pearson’s correlation

Combine parameters in a contour plot with a test statistic?
Analyzing DIORs in time series

• **Step 1**: Exploration of time series
 → Visualize data with plots
 → Data in context of system and responses of interest

• **Step 2**: Pre-processing of data: filtering, smoothing, detrending, etc.
 • Driven by knowledge of the system of interest
 • Driven by the data

• **Step 3**: Calculation of DIORs
 → Variance: standard deviation
 → Temporal autocorrelation: choose a lag first
 → Cross-correlation: Pearson’s correlation

• **Step 4**: Analyze relationship with relevant participant characteristics
Crucial considerations to make beforehand

• What exactly is the system and the response of interest?

• Do your measurements capture the characteristic system dynamics?
 • Which variable(s)?
 • Which measurement device/study design?
 • Occurrence of natural perturbations?

• Frequency of observations: sampling at intervals shorter than the characteristic time scales of the slowest return rate of the system
Interpretation of results

Main challenges:
1. Enormous heterogeneity of geriatric patients
 • Clinical trajectories
 • Dynamic fluctuations of bodily functions
Heart rate (beats/min)

Examples

Large fluctuations

Small fluctuations

Radboudumc
Heart rate (beats/min)

Atrial fibrillation

Sudden transitions in heart rhythm
Interpretation of results

Main challenges:
1. Enormous heterogeneity of geriatric patients
2. Results in context of theory of critical slowing down

![Diagram showing healthy functional decline and adaptation to infection with high and low resilience.]
Discussion

• Preliminary evidence for the value of dynamical indicators of resilience in the aging human

• Challenge to collect&analyze data and interpret results

• How are DIORs related to other complexity measures?

• Which systems are the right proxies for resilience of the whole body?

• How to study resilience from the perspective of the network of organs (cross-correlations)?
References

Developing Dynamical Indicators of Resilience Based on Physiologic Time Series in Older Adults

Sanne M.W. Gijzel1,2, Jerrald Rector1, Fokke van Meulen1, Ingrid A. van de Leemput2, Marten Scheffer2, Marcel G.M. Olde Rikkert1, René J.F. Melis1

1Department of Geriatrics, Radboud University Medical Center, Nijmegen, the Netherlands

2Environmental Sciences, Wageningen University, Wageningen, the Netherlands;

Sanne.Gijzel@radboudumc.nl

©Kim Wrang & Lisa Bregneager