Conceptual models of human aging and resilience

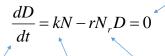
Peter M. Hoffmann Department of Physics Wayne State University, Detroit, MI

The aging paradox

- Molecular turnover in cells is rapid
- Molecule are replaced according to digital information – no information loss
- Faulty molecules are quickly degraded
- Efficient information repair with high fidelity
- Apoptosis and Senescence as final backstops
- Why do we age? Why are we not perfectly resilient?

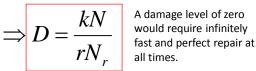
Models

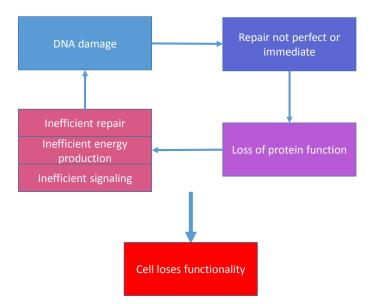
- Naïve wear theories are not likely rapid, high fidelity turnover of cell components, protein machines do not "wear out"
- Naïve ideas of "entropy increase" organisms are open systems and thermodynamic cost of DNA repair is very low
- Evolutionary explanation Programmed aging not likely; disposable soma theory presumes aging, does not explain it
- Cancer protection (senescence) but this already presumes inevitable information loss in cells.

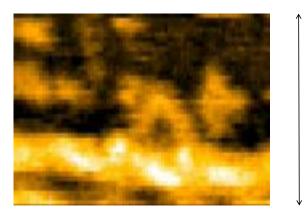

Physical models: Entropy

- Resources for repair
 - Note: Pure "thermodynamic" cost of repair is extremely low.
 - ~ F = NK_BTln4 for N mutations. N= 0.1%/cell $3x10^9$ base pairs* 10^{14} cells
 - Add in entropy production during repair: F \sim 7 J = 0.002 kcal
- Energy resources *should* be more than sufficient to repair all DNA all the time.
- **But**: Mitochondrial and DNA damage, as well as protein aggregation, cell senescence etc. are a well-known hallmarks of aging
- Clearly damage is increasing over time, despite "ease" of repair

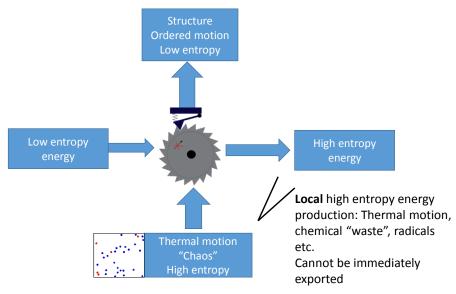
Why can't our cells repair all damage?

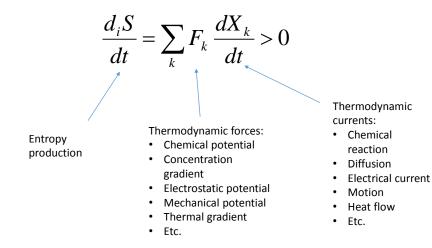

Simple conceptual model:


Assume steady _ state

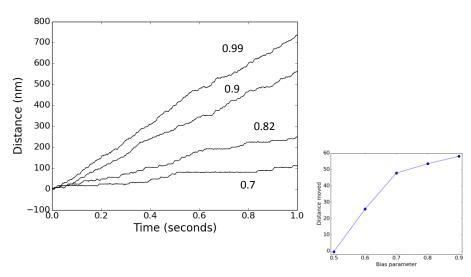

Rate of change in damage

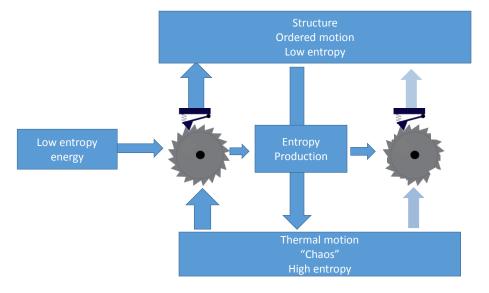
Ongoing damage rate Repair rate: proportional to number of repair enzymes and amount of damage


The machinery of life...

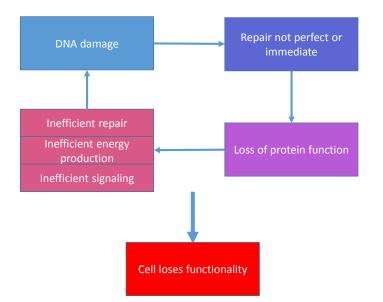

~ 100 nm

150 ms/frame


Life is a dynamics state: Ratcheting order from chaos

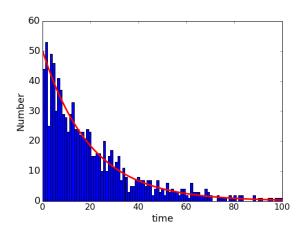


Entropy Production: Open systems (after Prigogine)



As a molecular ratchet loses structural fidelity....

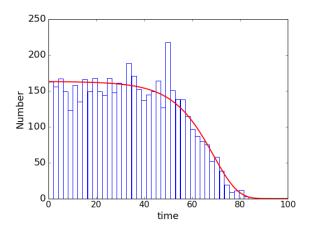
"Ratcheting" order from chaos requires intact structures and efficient energy flow

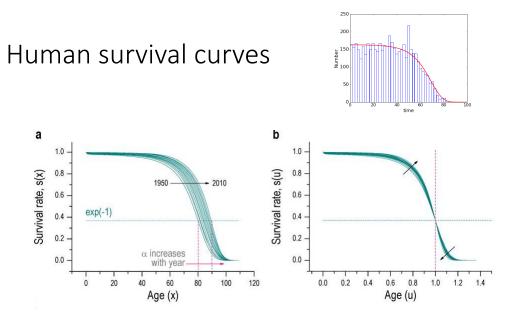


Reliability theory: Medawar's test tubes – Chance failure

- Imagine 1000 test tubes
- On any given day, any test tube can break with a probability p.
- If a test tube breaks, it is replaced by a new one.
- After some time, what is the steady-state age distribution of the population of test tubes?

Medawar's test tubes – Chance failure

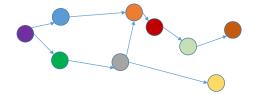



 $N(T) \sim e^{-kT}$

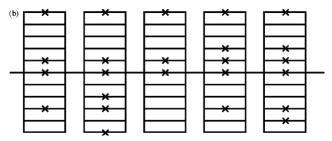
Medawar's test tubes – Chance failure and wear

- Now assume that in addition to breaking by accident, test tubes accumulate hairline fractures that make them more vulnerable to breakage.
- Assume damage accumulates exponentially (when test tubes are already damaged, they are more likely to sustain further damage).
- What does the age distribution look like now?

Medawar's test tubes – Chance failure and wear



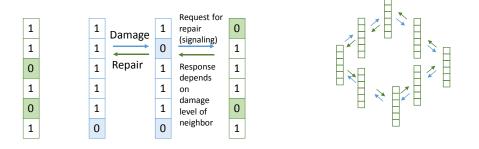
Trends in scale and shape of survival curves, Byung Mook Weon & Jung Ho Je, Scientific Reports volume 2, Article number: 504 (2012)

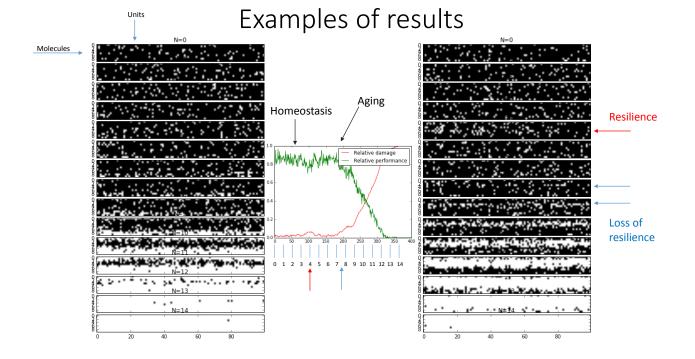

Reliability theory

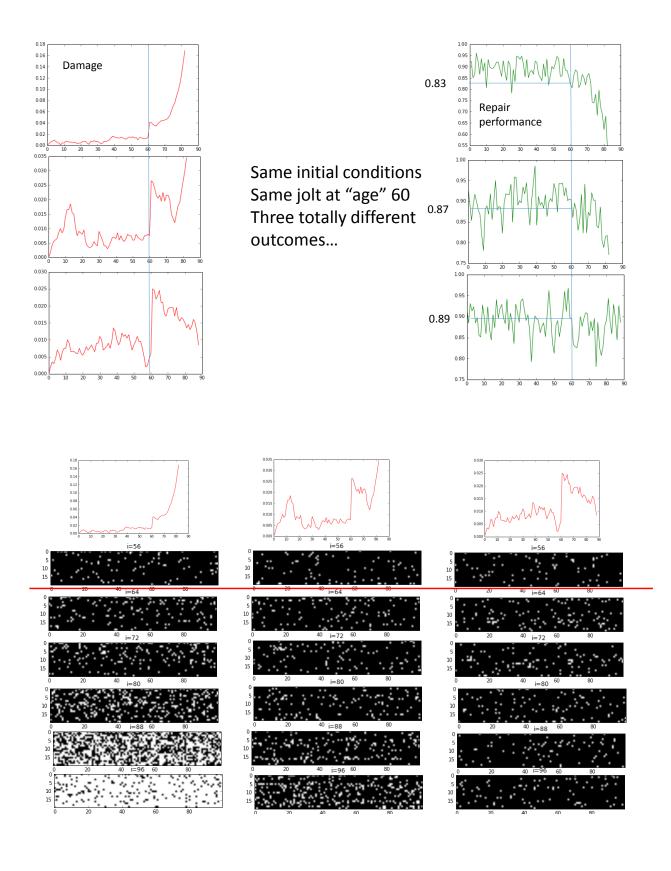
- From engineering: deals with reliability & wear-out of machines
- Chance failure & wear (Medawar model)
- Can take into account:
 - Repair
 - Redundancy (Components in "parallel")
 - Co-Dependency of components (Components in "series")

Reliability theory (Gavrilov & Gavrilova)

- Critical systems with high redundancy (parallel) systems placed in series.
- Failures do not lead to death, but to aging, until redundancy is exhausted.
- Without redundancy, "aging" stops (mortality plateau)

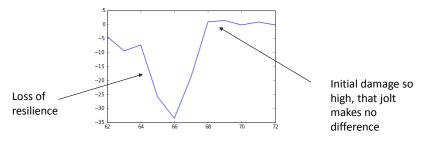

A simple model

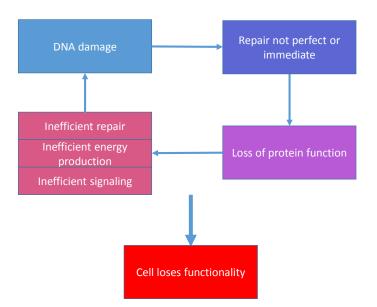

- Assumptions:
 - Systems are in parallel (genes, proteins, cells) & in series (cell assemblies, tissues, organs) ⇒redundancy and interdependence.
 - Model incorporates repair.
 - Damage happens locally, but repair requires systems response.
 - Probability and speed of signaling and repair depend on already existing damage.


A simple model

- M biomolecules (DNA) with N monomers each: 1 = correct monomer, 0 = incorrect monomer
- Random chance of getting damaged (1 to 0), number of damage chances = entropy production rate
- Entropy production rate increases with damage, decreases with repair
- Random chance of repair (0 to 1), probability of repair depends on state of "neighboring" molecules

Random chance of repair (0 to 1), number of repair chances = energy supply





Resilience

- Start with individuals at different initial damage levels
- Give a "jolt" of additional damage (35/2000 sites)
- Look at average age reduction

Initial damage level (out of 2000)

Hierarchy of aging

Local entropy production
DNA damage
Proteome damage
Cell damage and loss
Tissue damage and loss
Organ failure

Conclusions

- Entropy production produces damage that can be repaired only up to a point.
- Over time, damage accumulates and causes further damage (positive feedback).
- Positive feedback due to loss of "repair kinetics" (dynamics of repair)
- Aging is the result of accumulating damage on complex system with high initial redundancy.
- Once redundancy is highly reduced, there is low resilience and avalanche failures become more likely.
- Simple models can reproduce some possibly realistic features:
 - Overall aging dynamics
 - Stochastic response to insults: Superficially similar states can show very different resilience, difference in resilience can be very subtle
 - Critical window where small insults can have a large effect.
- Next steps:
 - How to connect to reality (complexity of organisms, actual observables)