Population Genetics of
low-probability transitions

Stephen Proulx
UC Santa Barbara




Population Genetics
Kimura’'s Neutral Th

Fixation Probabillity Gillespie’s SSWM

Ecological Models

Quantitative quation

Quasi-species



Frequency/Density

Dependence
¢ Alee effeCt LE bak 0 0.2 0.3 0.4 0.5
* Negative Frequency o .

Dependence
e Stochastic selection

1
“
-
o

Growth Factor

Mutant Frequency

e,

~ _ good year

B

—
i
——

/ 0.2 0.4 0.6 _ 08 1

v a

-~ badyear
o
Mutant Frequency



Stochastic selection

e [ransitions between population states(fixation).
e Can lead to lower than “neutral”’ transition rates

* |n specific models it can also lead to alternative
stable states



Variabllity
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Selection to reduce variance Selection to reduce variance
BUT: Emergent freq dep BUT: Emergent freq dep
Common allele favored Rare allele favored




Small variance approximation
p(1 —p) Proulx 2000
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0.2 r e Same mean: lower variance
favored
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 Rare strategy Is at a disadvantage
 makes transition between states more difficult
» coalescent: (Taylor & Etheridge)



| ottery Competition
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Small population size




™ Reg/Coding changes

JREX

B3 3 2 Ancestral gene functions in two contexts
DRSS 5 Mutations can alter coding region

E @ Mutations can alter regulatory region

T 9 Both kinds of mutation may affect a
single allele



The DDC Model
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All transitions are
circum-neutral




Matrix Model for the
Proulx 2012 DDC Process

How many times does the process have to
start over before “successful” duplication?



Estimating the Neutral
Duplication Time

e & @7
Topo <@N(@+ 1) @+3) + ==
Drift to fixation Higher u buys
IS slower in large more lottery

POPS tickets



Using the Origin-Fixation framework
for gene interaction evolution

e [aking a step towards non-equilibrium dynamics

» Probability of a substitution may depend on an additional

process component (mutation selection balance,
stochastic tunneling)

o Likewise, a stable polymorphism might be an
intermediate state from which further mutations can
invade/replace

Example from Proulx 2012



lwasa et al., 2004b. Stochastic tunnels ...

b , Weissman et al TPB 2009
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Weissman et al TPB 2009
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Mutation Network




Mutation Network

Good combination
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Frequency Dynamics
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Frequency Dynamics
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Frequency Dynamics
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Frequency Dynamics

If one is good, two
IS even better!
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Frequency Dynamics
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Frequency Dynamics
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Frequency Dynamics
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Approximate Waiting

Recessive Lethal T' mes Modification of
Tunneling Duplication second copy
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Stochastic Tuneling in
general

* Cancer: Multiple mutations required, causes a
difficult to reverse phase change in the organisms
organization

* |nvasion of diseases across species boundaries
e Colonization of sink habitats



Feedback through the environment

Dieckmann and Doebeli, 1999, Nature
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Three questions: I'm so
confused...

* How can we incorporate analyses of non-
A " " * *
equilibrium dynamics *and™® be able to make

general theory?

* How often do ecological feedbacks results in bi-
stable evolutionary states”




