Santa Fe Institute Collaboration Platform

COMPLEX TIME: Adaptation, Aging, & Arrow of Time

Get Involved!
Contact: Caitlin Lorraine McShea, Program Manager, cmcshea@santafe.edu

Aging in Single-celled Organisms: from Bacteria to the Whole Tree of Life/Bree Aldridge

From Complex Time

Notes by user Bree Aldridge (Tufts Univ.) for Aging in Single-celled Organisms: from Bacteria to the Whole Tree of Life

Post-meeting Reflection

1+ paragraphs on any combination of the following:

  • Presentation highlights
  • Open questions that came up
  • How your perspective changed
  • Impact on your own work
  • e.g. the discussion on [A] that we are having reminds me of [B] conference/[C] initiative/[D] funding call-for-proposal/[E] research group

I was stuck by the constant "laws" across species that are scale free. I am interested in how this may extend to single-cells in a populations and whether the scaling laws can be expanded from multicellular to intracellular organisms.

Aging (and the fitness objective) needs to be continuously defined and multiple forms of aging coexist in the same population.

Asymmetry is a mechanism to encode aging. Is the functional consequences of aging an evolutionary driver of asymmetry?

How do we experimentally measure aging and the effect of aging in single-cells? We are missing key experimental approaches.

Reference material notes

Some examples:

  • Here is [A] database on [B] that I pull data from to do [C] analysis that might be of interest to this group (insert link).
  • Here is a free tool for calculating [ABC] (insert link)
  • This painting/sculpture/forms of artwork is emblematic to our discussion on [X]!
  • Schwartz et al. 2017 offers a review on [ABC] migration as relate to climatic factors (add the reference as well).

Reference Materials