Santa Fe Institute Collaboration Platform

COMPLEX TIME: Adaptation, Aging, & Arrow of Time

Get Involved!
Contact: Caitlin Lorraine McShea, Program Manager, cmcshea@santafe.edu

Difference between revisions of "Dynamic Multi-System Resilience in Human Aging/Emergence of Aging in Natural and Synthetic Multicellular Structures"

From Complex Time
(Created page with "{{Agenda item |Start time=November 12, 2018 10:00:00 AM |End time=November 12, 2018 10:40:00 AM |Presenter=DervisCanVural |Pre-meeting notes=<span style="font-family:Helvetica...")
 
Line 3: Line 3:
 
|End time=November 12, 2018 10:40:00 AM
 
|End time=November 12, 2018 10:40:00 AM
 
|Presenter=DervisCanVural
 
|Presenter=DervisCanVural
|Pre-meeting notes=<span style="font-family:Helvetica">Many simple organisms such as ferns, hydra orjellyfish do not age. Their mortality rates remain approximately constant atall ages. In contrast, complex organisms typically have a probability of deathm(t)<span class="m9197279553008089642gmail-apple-converted-space"></span>thatincreases with age, t. Furthermore, the functional form of m(t) for manydifferent organisms show a remarkable degree of similarity. The differencebetween simple and complex organisms, and the universality of aging patternsamong complex organisms strongly suggest that aging is an emergent phenomenonthat depends not on the individual properties of biological building blocks,but rather, on the interactions between them. Indeed, we die not because weslowly run out of live cells, but because of systemic failures that manifest incomplex organs. In this talk I will present a quantitative theory of agingbased on evolutionary and mechanical arguments, and show how aging appears asan emergent phenomenon as one moves across the scale of complexity, from largemolecules and cells, to tissues and organs. I will particularly focus on agingin synthetic tissues, since this is the simplest structure that admitscontrolled experimental observation of emergent systemic damage.<o:p></o:p></span>
+
|Pre-meeting notes=Many simple organisms such as ferns, hydra or jellyfish do not age. Their mortality rates remain approximately constant at all ages. In contrast, complex organisms typically have a probability of deathm(t)
 +
that increases with age, t. Furthermore, the functional form of m(t) for many different organisms show a remarkable degree of similarity. The difference between simple and complex organisms, and the universality of aging patterns among complex organisms strongly suggest that aging is an emergent phenomenon that depends not on the individual properties of biological building blocks,but rather, on the interactions between them. Indeed, we die not because we slowly run out of live cells, but because of systemic failures that manifest in complex organs. In this talk I will present a quantitative theory of aging based on evolutionary and mechanical arguments, and show how aging appears as an emergent phenomenon as one moves across the scale of complexity, from large molecules and cells, to tissues and organs. I will particularly focus on aging in synthetic tissues, since this is the simplest structure that admits controlled experimental observation of emergent systemic damage.
 
}}
 
}}

Revision as of 20:39, October 3, 2018

November 12, 2018
10:00 am - 10:40 am

Presenter

Dervis Can Vural (Univ. Notre Dame)

Abstract

Many simple organisms such as ferns, hydra or jellyfish do not age. Their mortality rates remain approximately constant at all ages. In contrast, complex organisms typically have a probability of deathm(t) that increases with age, t. Furthermore, the functional form of m(t) for many different organisms show a remarkable degree of similarity. The difference between simple and complex organisms, and the universality of aging patterns among complex organisms strongly suggest that aging is an emergent phenomenon that depends not on the individual properties of biological building blocks,but rather, on the interactions between them. Indeed, we die not because we slowly run out of live cells, but because of systemic failures that manifest in complex organs. In this talk I will present a quantitative theory of aging based on evolutionary and mechanical arguments, and show how aging appears as an emergent phenomenon as one moves across the scale of complexity, from large molecules and cells, to tissues and organs. I will particularly focus on aging in synthetic tissues, since this is the simplest structure that admits controlled experimental observation of emergent systemic damage.

Presentation file(s)
Download Presentation (Delete)
Related files