Santa Fe Institute Collaboration Platform

COMPLEX TIME: Adaptation, Aging, & Arrow of Time

Get Involved!
Contact: Caitlin Lorraine McShea, Program Manager, cmcshea@santafe.edu

Difference between revisions of "Hallmarks of Biological Failure/RozalynAnderson"

From Complex Time
Line 9: Line 9:
  
 
Valenzano: The fact that ecology predicts genome size was super interesting and that the expansion is explained by transposons! I also loved the idea that the long-lived species had more emphasis on positive/purifying selection and the short-lived species had more evidence of the relaxed selection. These are an amazingly useful species for the interactions of genetics, environment - the exposome!
 
Valenzano: The fact that ecology predicts genome size was super interesting and that the expansion is explained by transposons! I also loved the idea that the long-lived species had more emphasis on positive/purifying selection and the short-lived species had more evidence of the relaxed selection. These are an amazingly useful species for the interactions of genetics, environment - the exposome!
 
very striking finding
 
 
}}
 
}}

Revision as of 22:58, April 8, 2019

Notes by user Rozalyn Anderson (Univ. Wisconsin) for Hallmarks of Biological Failure

Post-meeting Reflection

1+ paragraphs on any combination of the following:

  • Presentation highlights
  • Open questions that came up
  • How your perspective changed
  • Impact on your own work
  • e.g. the discussion on [A] that we are having reminds me of [B] conference/[C] initiative/[D] funding call-for-proposal/[E] research group

A theme that I see across the talks and in the discussion is the issue of complexity and how integrity of complex systems is lost with age and how it might be retained to impinge on health and resilience.

The idea of the adaptive landscape is very useful as is the idea of tipping point - i particularly like the idea of aging as a series of transitions where the path taken dictates the possibilities open for the future

Hochberg: Concepts that caught my attention, as a function of age is loss of resilience equally felt through the lifespan ie young v old? Also Diverse/idiosynchratic networks – how should models be informed. The idea of hierarchies of regulatory or adaptive nodes is interesting but I wonder do we know that there are grades of nodes in the first place, if there are how do we find them?

Crespi : Biological Risk Matrix… coupling versus complexity. I had difficulty with this idea because the systems were assigned importance but it wasn't clear to me what the basis for those assignations was. I have viewed the organ systems as different but inseparable pieces of the organism as a whole. I do like the idea of viewing the aging of specific processes in terms of trade-offs - I wonder about the inbuilt redundancy of systems and think we could consider the possibility that age-induced adaptions might just as well be beneficial - ie tailored to the prevailing internal environment or the current disposition of regulatory nodes.

Valenzano: The fact that ecology predicts genome size was super interesting and that the expansion is explained by transposons! I also loved the idea that the long-lived species had more emphasis on positive/purifying selection and the short-lived species had more evidence of the relaxed selection. These are an amazingly useful species for the interactions of genetics, environment - the exposome!

Reference material notes

Some examples:

  • Here is [A] database on [B] that I pull data from to do [C] analysis that might be of interest to this group (insert link).
  • Here is a free tool for calculating [ABC] (insert link)
  • This painting/sculpture/forms of artwork is emblematic to our discussion on [X]!
  • Schwartz et al. 2017 offers a review on [ABC] migration as relate to climatic factors (add the reference as well).

Reference Materials