Santa Fe Institute Collaboration Platform

COMPLEX TIME: Adaptation, Aging, & Arrow of Time

Get Involved!
Contact: Caitlin Lorraine McShea, Program Manager, cmcshea@santafe.edu

Search by property

From Complex Time

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Abstract" with value "Body size determines key behavioral and life history traits across species, as well as interactions between inspaniduals within and between species. Therefore, variation in sizes of immigrants, by exerting variation in trophic interaction strengths, may drive the trajectory and outcomes of community assembly. Here, I study the effects of size variation in the immigration pool on assembly dynamics and equilibrium distributions of sizes and consumer-resource size-ratios using a general mathematical model. I find that because small sizes both, improve the ability to invade and destabilize the community, invasibility and stability pull body size distributions in opposite directions, favoring an increase in both size and size-ratios during assembly, and ultimately yielding a right-skewed size and a symmetric size-ratio distribution. In many scenarios, the result at equilibrium is a systematic increase in body sizes and size-ratios with trophic level. Thus these patterns in size structure are 'signatures' of dynamically constrained, non-neutral community assembly. I also show that for empirically feasible distributions of body sizes in the immigration pool, immigration bias in body sizes cannot counteract dynamical constraints during assembly and thus signatures emerge consistently. I test the theoretical predictions using data from nine terrestrial and aquatic communities and find strong evidence that natural communities do indeed exhibit such signatures of dynamically constrained assembly. Overall, the results provide new measures to detect general, non-neutral patterns in community assembly dynamics, and show that in general, body size is dominant trait that strongly influences assembly and recovery of natural communities and ecosystems.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 250 | next 250) (20 | 50 | 100 | 250 | 500)


    

List of results

    • The Role of Body Size Variation in Community Assembly  + (Body size determines key behavioral and liBody size determines key behavioral and life history traits across species, as well as interactions between individuals within and between species. Therefore, variation in sizes of immigrants, by exerting variation in trophic interaction strengths, may drive the trajectory and outcomes of community assembly. Here, I study the effects of size variation in the immigration pool on assembly dynamics and equilibrium distributions of sizes and consumer-resource size-ratios using a general mathematical model. I find that because small sizes both, improve the ability to invade and destabilize the community, invasibility and stability pull body size distributions in opposite directions, favoring an increase in both size and size-ratios during assembly, and ultimately yielding a right-skewed size and a symmetric size-ratio distribution. In many scenarios, the result at equilibrium is a systematic increase in body sizes and size-ratios with trophic level. Thus these patterns in size structure are 'signatures' of dynamically constrained, non-neutral community assembly. I also show that for empirically feasible distributions of body sizes in the immigration pool, immigration bias in body sizes cannot counteract dynamical constraints during assembly and thus signatures emerge consistently. I test the theoretical predictions using data from nine terrestrial and aquatic communities and find strong evidence that natural communities do indeed exhibit such signatures of dynamically constrained assembly. Overall, the results provide new measures to detect general, non-neutral patterns in community assembly dynamics, and show that in general, body size is dominant trait that strongly influences assembly and recovery of natural communities and ecosystems.ery of natural communities and ecosystems.)