Santa Fe Institute Collaboration Platform

COMPLEX TIME: Adaptation, Aging, & Arrow of Time

Get Involved!
Contact: Caitlin Lorraine McShea, Program Manager, cmcshea@santafe.edu

Search by property

From Complex Time

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Abstract" with value "Although species longevity is subject to a spanerse range of selective forces, the mortality curves of a wide variety of organisms are rather similar. We argue that aging and its universal characteristics may have evolved by means of a gradual increase in the systemic interdependence between a large collection of biochemical or mechanical components. Modeling the organism as a dependency network which we create using a constructive evolutionary process, we age it by allowing nodes to be broken or repaired according to a probabilistic algorithm that accounts for random failures/repairs and dependencies. Our simulations show that the network slowly accumulates damage and then catastrophically collapses. We use our simulations to fit experimental data for the time dependent mortality rates of a variety of multicellular organisms and even complex machines such as automobiles. Our study suggests that aging is an emergent finite-size effect in networks with dynamical dependencies and that the qualitative and quantitative features of aging are not sensitively dependent on the details of system structure.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 500 | next 500) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Increased Network Interdependency Leads to Aging  + (Although species longevity is subject to aAlthough species longevity is subject to a diverse range of selective forces, the mortality curves of a wide variety of organisms are rather similar. We argue that aging and its universal characteristics may have evolved by means of a gradual increase in the systemic interdependence between a large collection of biochemical or mechanical components. Modeling the organism as a dependency network which we create using a constructive evolutionary process, we age it by allowing nodes to be broken or repaired according to a probabilistic algorithm that accounts for random failures/repairs and dependencies. Our simulations show that the network slowly accumulates damage and then catastrophically collapses. We use our simulations to fit experimental data for the time dependent mortality rates of a variety of multicellular organisms and even complex machines such as automobiles. Our study suggests that aging is an emergent finite-size effect in networks with dynamical dependencies and that the qualitative and quantitative features of aging are not sensitively dependent on the details of system structure.endent on the details of system structure.)