Santa Fe Institute Collaboration Platform

Thermodynamics of Computation

Thermodynamic Computing

From Thermodynamics of Computation

Start date/time: January 3, 2019

End date/time: January 5, 2019

Description: The Computing Community Consortium (CCC) will hold a visioning workshop in Hawaii in early January, 2019 to create a vision for thermodynamic computing, a statement of research needs, and a summary of the current state of understanding of this new area. Workshop attendance will be by invitation only and travel expenses will be available for select participants. We seek short white papers to help create the agenda for the workshop and select attendees. See the application tab for more information.

Thermodynamics has a long history in the engineering of computing systems due to its role in power consumption, scaling, and device performance [1],[2]. In a different context, thermodynamically motivated algorithmic techniques are prevalent and highly successful in areas such as machine learning [3], simulated annealing [4], and neuromorphic systems. The foundational thinking underlying much of the existing technology derives largely from equilibrium properties of closed thermodynamic systems. We aim to foster a community to extend these foundations into the domain of non-equilibrium thermodynamics toward the development of a new class of technologies that we call open thermodynamic computers.

The overall intuition is that striving for thermodynamic efficiency is not only highly desirable in hardware components, but may also be used as an embedded capability in the creation of algorithms: can dissipated heat be used to trigger adaptation/restructuring of (parts of) the functioning hardware, thus allowing hardware to evolve increasingly efficient computing strategies? Recent theoretical developments in non-equilibrium thermodynamics suggest that thermodynamics drives the organization of open systems as a natural response to external input potentials; that is, that these systems adapt as they dissipate energy, enter low dissipation homeostatic states and as a result ‘learn’ to ‘predict’ future inputs [5],[6]. For example, lower bounds on thermodynamic efficiency in driven systems (away from equilibrium), indicate that systems have to retain relevant, predictive information in order to be thermodynamically efficient [7],[8]. This strategy is, of course, the same as what is followed in machine learning (and, in general, in science): predictive inference [9]. This interesting connection between energy efficiency and information processing inspires us to bring together researchers in the various disciplines with the goal of building the foundations that would allow us to build radically different computing systems.

This CCC workshop will gather a set of leading researchers working to define open thermodynamic computers, to describe the reasons that they should be studied, to enumerate the major challenges that lay before us, and to create a strategy for a way forward. We seek a diverse group of physical theorists, electrical and computer engineers, and electronic / ionic device researchers with strong understanding of thermodynamics.

Location: Prince Waikiki - Honolulu Luxury Hotel, Holomoana Street, Honolulu, HI, USA


Type of event: Event

Links to Reference Materials:

Attendee list: