Santa Fe Institute Collaboration Platform

Thermodynamics of Computation

Difference between revisions of "Sadasivan Shankar"

From Thermodynamics of Computation
Line 22: Line 22:
 
|Related link title=Non-equilibrium dynamics of electrons in weakly ionized plasmas from Boltzmann Equation
 
|Related link title=Non-equilibrium dynamics of electrons in weakly ionized plasmas from Boltzmann Equation
 
|Related link URL=https://books.google.com/books/about/Large_Scale_Modelling_of_Glow_Discharges.html?id=frjGRQAACAAJ
 
|Related link URL=https://books.google.com/books/about/Large_Scale_Modelling_of_Glow_Discharges.html?id=frjGRQAACAAJ
 +
}}{{Related link
 +
|Related link title=CAN WE LEARN (AGAIN) FROM NEUROSCIENCE ABOUT HOW TO DO COMPUTING?
 +
|Related link URL=https://carnegiescience.edu/events/lectures/can-we-learn-again-neuroscience-about-how-do-computing
 +
}}{{Related link
 +
|Related link title=Maxwell’s Demon, Schrodinger’s Cat, and Broca’s Brain: Gate keepers to the Future of Computing
 +
|Related link URL=https://sites.slac.stanford.edu/colloquium/events/maxwell%E2%80%99s-demon-schrodinger%E2%80%99s-cat-and-broca%E2%80%99s-brain-gate-keepers-the-future-computing
 +
}}{{Related link
 +
|Related link title=APS March Meeting 2021: Use of Carnot’s Engine and Bernoulli’s Pump to identify efficiency of information processing for computing beyond Moore's Law
 +
|Related link URL=http://meetings.aps.org/Meeting/MAR21/Session/E17.11
 
}}
 
}}
 
}}
 
}}

Revision as of 06:48, January 31, 2021

Biography: Sadasivan Shankar is an Associate in the Harvard School of Engineering and Applied Sciences, and was the first Margaret and Will Hearst Visiting Lecturer in Harvard University. He has co-instructed several graduate-level classes on Computational Materials Design, Extreme Computing for Real Applications, and Mitigating Toxicity by Materials Design. He is involved in research in the areas of materials, chemistry, multi-scale and nonequilibrium methods, and large-scale computational methods. Dr. Shankar earned his Ph.D. in Chemical Engineering and Materials Science from University of Minnesota, Minneapolis. He is a co-inventor in over twenty patent filings covering areas in new chemical reactor designs, semiconductor processes, bulk and nano materials, device structures, and algorithms. He is also a co-author in over hundred publications and presentations in measurements, multi-scale and multi-physics methods spanning from quantum scale to macroscopic scales, in the areas of chemical synthesis, plasma chemistry and processing, non-equilibrium electronic, ionic, and atomic transport, energy efficiency of information processing, and machine learning methods for bridging across scales, and estimating complex materials properties and in process control. Dr. Shankar is a co-founder of Material Alchemy, a “last mile” translational and independent venture in materials design for accelerating materials discovery to adoption, with environmental sustainability as a key goal.

Field(s) of Research: Chemical Reaction Networks, Computer Science Engineering to Address Energy Costs, General Non-equilibrium Statistical Physics, Logically Reversible Computing

Related links