Santa Fe Institute Collaboration Platform

COMPLEX TIME: Adaptation, Aging, & Arrow of Time

Get Involved!
Contact: Caitlin Lorraine McShea, Program Manager, cmcshea@santafe.edu

Search by property

From Complex Time

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Pre-meeting notes" with value "''Victoria Booth - A case for ntegrating all time scales: sleep-wake temporal architecture across development and aging'' It is well documented that duration, timing and the level of fragmentation of sleep change across development and aging. Some studies have looked more closely at sleep-wake temporal architecture and identified finer timescale changes that occur over development. Statistical analyses of the distributions of sleep and wake bout durations in rodents show that both sleep and wake bouts display exponential distributions in infancy but the wake bout distribution shifts to a power-law or multiexponential distribution with development. This qualitative difference in sleep and wake bout distributions has likewise been observed in adult humans and other mammals. In adult sleep, wake, NREM and REM sleep bout distributions have distinct properties which are additionally modulated across the 24h day due to the circadian rhythm. With further aging, NREM bout distributions change due to increased fragmentation of that state. The different bout length distribution profiles for wake, NREM and REM sleep suggest that these states are regulated by different physiological mechanisms, and the changes in distribution profiles across development and aging presumably reflect changes in those regulatory mechanisms. This begs the question: can tracking bout duration distributions across development and aging provide insight into the structure of the underlying physiological mechanisms governing sleep regulation?". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • What is Sleep?/What’s the best level or timescale for modeling sleep or do we need to integrate them all?  + (''Victoria Booth - A case for ntegrating a''Victoria Booth - A case for ntegrating all time scales: sleep-wake temporal architecture across development and aging''</br></br>It is well documented that duration, timing and the level of fragmentation of sleep change across development and aging. Some studies have looked more closely at sleep-wake temporal architecture and identified finer timescale changes that occur over development. Statistical analyses of the distributions of sleep and wake bout durations in rodents show that both sleep and wake bouts display exponential distributions in infancy but the wake bout distribution shifts to a power-law or multiexponential distribution with development. This qualitative difference in sleep and wake bout distributions has likewise been observed in adult humans and other mammals. In adult sleep, wake, NREM and REM sleep bout distributions have distinct properties which are additionally modulated across the 24h day due to the circadian rhythm. With further aging, NREM bout distributions change due to increased fragmentation of that state. The different bout length distribution profiles for wake, NREM and REM sleep suggest that these states are regulated by different physiological mechanisms, and the changes in distribution profiles across development and aging presumably reflect changes in those regulatory mechanisms. This begs the question: can tracking bout duration distributions across development and aging provide insight into the structure of the underlying physiological mechanisms governing sleep regulation?cal mechanisms governing sleep regulation?)