Santa Fe Institute Collaboration Platform

COMPLEX TIME: Adaptation, Aging, & Arrow of Time

Get Involved!
Contact: Caitlin Lorraine McShea, Program Manager, cmcshea@santafe.edu

Search by property

From Complex Time

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Pre-meeting notes" with value "A key lesson from allometric scaling perspectives has been that a variety of physiological processes and timescales systematically change with body size. These have important implications for interpreting a variety of ecological processes and for normalizing physiology across spanerse organisms. Applying these concepts to infectious disease may, on the practical side, make it possible to scale interventions between organisms of very different size, and on scientific side, help us to systematize the ecology and evolution of hosts and parasites. In this talk we will discuss: 1) how various immune dynamics can be systematically scaled with body size and what implications this may have for organism physiology, 2) the time-scales of infection across spanerse organisms, 3) the consequences of infection on lifetime reproduction across organisms of different size and across different broad taxonomic groups, and 4) the efficacy of vaccines and the timescales of immunity.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Aging and Adaptation in Infectious Diseases II/Session I: Immune System: Architecture and Dynamics#Allometric Scalings and Immune Dynamics  + (A key lesson from allometric scaling perspA key lesson from allometric scaling perspectives has been that a variety of physiological processes and timescales systematically change with body size. These have important implications for interpreting a variety of ecological processes and for normalizing physiology across diverse organisms. Applying these concepts to infectious disease may, on the practical side, make it possible to scale interventions between organisms of very different size, and on scientific side, help us to systematize the ecology and evolution of hosts and parasites. In this talk we will discuss: 1) how various immune dynamics can be systematically scaled with body size and what implications this may have for organism physiology, 2) the time-scales of infection across diverse organisms, 3) the consequences of infection on lifetime reproduction across organisms of different size and across different broad taxonomic groups, and 4) the efficacy of vaccines and the timescales of immunity.f vaccines and the timescales of immunity.)