Santa Fe Institute Collaboration Platform

COMPLEX TIME: Adaptation, Aging, & Arrow of Time

Get Involved!
Contact: Caitlin Lorraine McShea, Program Manager, cmcshea@santafe.edu

Property:Abstract

From Complex Time

This is a property of type Text.

Showing 20 pages using this property.
T
Starting with Darwin, biologists have asked how populations evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. Specifically of interest is the emergence of cooperation and multicellularity where the fitness of individuals often appears in conflict with that of the population. Theories of social evolution and evolutionary game theory have produced a number of fruitful results employing two-state two-body frameworks. In this study, we depart from this tradition and instead consider a multi-player, multi-state evolutionary game, in which the fitness of an agent is determined by its relationship to an arbitrary number of other agents. We show that populations organize themselves in one of four distinct phases of interdependence depending on one parameter, selection strength. Some of these phases involve the formation of specialized large-scale structures. We then describe how the evolution of independence can be manipulated through various external perturbations.  +
S
Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin, and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics, and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analyzed the largest cohort and set of distinct, clinically relevant body habitats to date. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families, and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associationa of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology, and translational applications of the human microbiome.  +
T
The accumulation of data on the genomic bases of adaptation has triggered renewed interest in theoretical models of adaptation. Among these models, Fisher's geometric model (FGM) has received a lot of attention over the past two decades. FGM is based on a continuous multidimensional phenotypic landscape, but it is mostly used for the emerging properties of individual mutation effects. Despite its apparent simplicity and limited number of pa-rameters, FGM integrates a full model of mutation and epistatic interactions that allows the study of both beneficial and deleterious mutations and, subse-quently, the fate of evolving populations. In this review, I present the different properties of FGM and the qualitative and quantitative support they have received from experimental evolution data. I then discuss how to estimate the different parameters of the model and outline some future directions to connect FGM and the molecular determinants of adaptation.  +
C
The brain comprises complex structural and functional networks, but much remains to be determined regarding how these networks support the communication processes that underlie neuronal computation. In this Review, Avena-Koenigsberger, Misic and Sporns discuss the network basis of communication dynamics in the brain.  +
S
The diversification of life involved enormous increases in size and complexity. The evolutionary transitions from prokaryotes to unicellular eukaryotes to metazoans were accompanied by major innovations in metabolic design. Here we show that the scalings of metabolic rate, population growth rate, and production efficiency with body size have changed across the evolutionary transitions. Metabolic rate scales with body mass superlinearly in prokaryotes, linearly in protists, and sublinearly in metazoans, so Kleiber's 3/4 power scaling law does not apply universally across organisms. The scaling of maximum population growth rate shifts from positive in prokaryotes to negative in protists and metazoans, and the efficiency of production declines across these groups. Major changes in metabolic processes during the early evolution of life overcame existing constraints, exploited new opportunities, and imposed new constraints.  +
W
The geometric mean of fitness is considered to be the main indicator of evolutionary change in stochastic models. However, this measure was initially derived for models with infinite population sizes, where the long-term evolutionary behavior can be described with certainty. In this paper we begin an exploration of the limitations and utility of this approach to evolution in finite populations and discuss alternate methods for predicting evolutionary dynamics. We reanalyze a model of lottery competition under environmental stochasticity by including population finiteness, and show that the geometric mean predictions do not always agree with those based on the fixa- tion probability of rare alleles. Further, the fixation probability can be inserted into adaptive dynamics equations to derive the mean state of the population. We explore the effects of increasing population size on these conclusions through simulations. These simulations show that for small population sizes the fixation probability accurately predicts the course of evolution, but as population size becomes large the geometric mean predictions are upheld. The two approaches are reconciled because the time scale on which the fixation probability approach applies becomes very large as population size grows.  +
M
The interspecies exchange of metabolites plays a key role in the spatiotemporal dynamics of microbial communities. This raises the question of whether ecosystem-level behavior of structured communities can be predicted using genome-scale metabolic models for multiple organisms. We developed a modeling framework that integrates dynamic flux balance analysis with diffusion on a lattice and applied it to engineered communities. First, we predicted and experimentally confirmed the species ratio to which a two-species mutualistic consortium converges and the equilibrium composition of a newly engineered three-member community. We next identified a specific spatial arrangement of colonies, which gives rise to what we term the "eclipse dilemma": does a competitor placed between a colony and its cross-feeding partner benefit or hurt growth of the original colony? Our experimentally validated finding that the net outcome is beneficial highlights the complex nature of metabolic interactions in microbial communities while at the same time demonstrating their predictability. © 2014 The Authors.  +
N
The meaning of language is represented in regions of the cerebral cortex collectively known as the ‘semantic system’. However, little of the semantic system has been mapped comprehensively, and the semantic selectivity of most regions is unknown. Here we systematically map semantic selectivity across the cortex using voxel-wise modelling of functional MRI (fMRI) data collected while subjects listened to hours of narrative stories. We show that the semantic system is organized into intricate patterns that seem to be consistent across individuals. We then use a novel generative model to create a detailed semantic atlas. Our results suggest that most areas within the semantic system represent information about specific semantic domains, or groups of related concepts, and our atlas shows which domains are represented in each area. This study demonstrates that data-driven methods—commonplace in studies of human neuroanatomy and functional connectivity—provide a powerful and efficient means for mapping functional representations in the brain.  +
F
The organization of human brain networks can be measured by capturing correlated brain activity with fMRI. There is considerable interest in understanding how brain networks vary across individuals or neuropsychiatric populations or are altered during the performance of specific behaviors. However, the plausibility and validity of such measurements is dependent on the extent to which functional networks are stable over time or are state dependent. We analyzed data from nine high-quality, highly sampled individuals to parse the magnitude and anatomical distribution of network variability across subjects, sessions, and tasks. Critically, we find that functional networks are dominated by common organizational principles and stable individual features, with substantially more modest contributions from task-state and day-to-day variability. Sources of variation were differentially distributed across the brain and differentially linked to intrinsic and task-evoked sources. We conclude that functional networks are suited to measuring stable individual characteristics, suggesting utility in personalized medicine. Gratton et al. comprehensively measure individual, day-to-day, and task variance in functional brain networks, revealing that networks are dominated by stable individual factors, not cognitive content. These findings suggest utility of functional network measurements in personalized medicine.  +
L
The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.  +
R
The primary somatosensory (S1) and motor (M1) cortices are somatotopically organized, with distinct brain areas receiving information from—and controlling the movements of specific body parts. But once this specialized organization has formed, can it be altered to support the changing needs of the organism? In this chapter, we reexamine the extent to which reorganization of the cortical hand representation occurs in the adult primate brain, with respect to both physiology and behavior. We review seminal findings reporting changes in the cortical maps of humans and nonhuman primates, which have been interpreted as evidence of brain reorganization: a qualitative change in the response of neurons. For example, a hand sensory area now responds to tactile stimulation of the face. We focus on three potential triggers for brain reorganization: changed input (due to training), input loss (due to amputation), and substrate loss (due to stroke). We review recent research demonstrating that the canonical functional organization in S1 and M1 is more resilient than originally assumed. Instead, experience or injury-dependent cortical map changes more likely result either from the unmasking of preexisting cortical connections or from subcortical reorganization, rather than true cortical reorganization. Finally, we examine whether cortical map changes, whatever their physiological origin, have any causal adaptive or maladaptive consequence on perception and action and conclude that they do not. Overall, our review suggests that although the adult brain can change based on experience or injury, cortical reorganization does not need to be invoked as the driving mechanism.  +
T
The purpose of this paper is to describe a framework for the understanding of rules that govern how neural system dynamics are coordinated to produce behavior. The framework, structured flows on manifolds (SFM), posits that neural processes are flows depicting system interactions that occur on relatively low-dimension manifolds, which constrain possible functional configurations. Although this is a general framework, we focus on the application to brain disorders. We first explain the Epileptor, a phenomenological computational model showing fast and slow dynamics, but also a hidden repertoire whose expression is similar to refractory status epilepticus. We suggest that epilepsy represents an innate brain state whose potential may be realized only under certain circumstances. Conversely, deficits from damage or disease processes, such as stroke or dementia, may reflect both the disease process per se and the adaptation of the brain. SFM uniquely captures both scenarios.  +
D
The role of climate forcing in the population dynamics of infectious diseases has typically been revealed via retrospective analyses of incidence records aggregated across space and, in particular, over whole cities. Here, we focus on the transmission dynamics of rotavirus, the main diarrheal disease in infants and young children, within the megacity of Dhaka, Bangladesh. We identify two zones, the densely urbanized core and the more rural periphery, that respond differentially to flooding. Moreover, disease seasonality differs substantially between these regions, spanning variation comparable to the variation from tropical to temperate regions. By combining process-based models with an extensive disease surveillance record, we show that the response to climate forcing is mainly seasonal in the core, where a more endemic transmission resulting from an asymptomatic reservoir facilitates the response to the monsoons. The force of infection in this monsoon peak can be an order of magnitude larger than the force of infection in the more epidemic periphery, which exhibits little or no postmonsoon outbreak in a pattern typical of nearby rural areas. A typically smaller peak during the monsoon season nevertheless shows sensitivity to interannual variability in flooding. High human density in the core is one explanation for enhanced transmission during troughs and an associated seasonal monsoon response in this diarrheal disease, which unlike cholera, has not been widely viewed as climate-sensitive. Spatial demographic, socioeconomic, and environmental heterogeneity can create reservoirs of infection and enhance the sensitivity of disease systems to climate forcing, especially in the populated cities of the developing world.  +
A
The underlying cause of aging remains one of the central mysteries of biology. Recent studies in several different systems suggest that not only may the rate of aging be modified by environmental and genetic factors, but also that the aging clock can be reversed, restoring characteristics of youthfulness to aged cells and tissues. This Review focuses on the emerging biology of rejuvenation through the lens of epigenetic reprogramming. By defining youthfulness and senescence as epigenetic states, a framework for asking new questions about the aging process emerges.  +
E
There is growing concern over tipping points arising in ecosystems due to the crossing of environmental thresholds. Tipping points lead to strong and possibly irreversible shifts between alternative ecosystem states incurring high societal costs. Traits are central to the feedbacks that maintain alternative ecosystem states, as they govern the responses of populations to environmental change that could stabilize or destabilize ecosystem states. However, we know little about how evolutionary changes in trait distributions over time affect the occurrence of tipping points, and even less about how big scale ecological shifts reciprocally interact with trait dynamics. We argue that interactions between ecological and evolutionary processes should be taken into account for understanding the balance of feedbacks governing tipping points in nature.  +
T
Thermodynamics is the paradigm example in physics of a time-asymmetric theory, but the origin of the asymmetry lies deeper than the second law. A primordial arrow can be defined by the way of the equilibration principle (“minus first law”). By appealing to this arrow, the nature of the well-known ambiguity in Carathéodory's 1909 version of the second law becomes clear. Following Carathéodory's seminal work, formulations of thermodynamics have gained ground that highlight the role of the binary relation of adiabatic accessibility between equilibrium states, the most prominent recent example being the important 1999 axiomatization due to Lieb and Yngvason. This formulation can be shown to contain an ambiguity strictly analogous to that in Carathéodory's treatment.  +
M
This paper explains some implications of Markov-process theory for models of mortality. We show that an important qualitative feature common to empirical mortality data, and which has been found in certain models - the convergence to a "mortality plateau" - is, in fact, a generic consequence of the models' convergence to a "quasistationary distribution". This phenomenon has been explored extensively in the mathematical literature. Not only does this generalization free important results from specifics of the models, it also suggests a new explanation for the convergence to constant mortality. At the same time that we show that the late behavior of these models - convergence to a finite asymptote - is almost logically immutable, we also point out that the early behavior of the mortality rates can be more flexible than has been generally acknowledged. We show, in particular, that an appropriate choice of initial conditions enables one popular model to approximate any reasonable hazard-rate data. This illustrates how precarious it can be to read a model's vindication from its consilience with a favored hazard-rate function, such as the Gompertz exponential. © 2004 Elsevier Inc. All rights reserved.  +
E
This study sought to examine the effect of meditation experience on brain networks underlying cognitive actions employed during contemplative practice. In a previous study, we proposed a basic model of naturalistic cognitive fluctuations that occur during the practice of focused attention meditation. This model specifies four intervals in a cognitive cycle: mind wandering (MW), awareness of MW, shifting of attention, and sustained attention. Using subjective input from experienced practitioners during meditation, we identified activity in salience network regions during awareness of MW and executive network regions during shifting and sustained attention. Brain regions associated with the default mode were active during MW. In the present study, we reasoned that repeated activation of attentional brain networks over years of practice may induce lasting functional connectivity changes within relevant circuits. To investigate this possibility, we created seeds representing the networks that were active during the four phases of the earlier study, and examined functional connectivity during the resting state in the same participants. Connectivity maps were then contrasted between participants with high vs. low meditation experience. Participants with more meditation experience exhibited increased connectivity within attentional networks, as well as between attentional regions and medial frontal regions. These neural relationships may be involved in the development of cognitive skills, such as maintaining attention and disengaging from distraction, that are often reported with meditation practice. Furthermore, because altered connectivity of brain regions in experienced meditators was observed in a non-meditative (resting) state, this may represent a transference of cognitive abilities off the cushion into daily life.  +
M
To explain diversity in forests, niche theory must show how multiple plant species coexist while competing for the same resources. Although successional processes are widespread in forests, theoretical work has suggested that differentiation in successional strategy allows only a few species stably to coexist, including only a single shade tolerant. However, this conclusion is based on current niche models, which encode a very simplified view of plant communities, suggesting that the potential for niche differentiation has remained unexplored. Here, we show how extending successional niche models to include features common to all vegetation-height-structured competition for light under a prevailing disturbance regime and two trait-mediated tradeoffs in plant function-enhances the diversity of species that can be maintained, including a diversity of shade tolerants. We identify two distinct axes of potential niche differentiation, corresponding to the traits leaf mass per unit leaf area and height at maturation. The first axis allows for coexistence of different shade tolerances and the second axis for coexistence among species with the same shade tolerance. Addition of this second axis leads to communities with a high diversity of shade tolerants. Niche differentiation along the second axis also generates regions of trait space wherein fitness is almost equalized, an outcome we term "evolutionarily emergent near-neutrality." For different environmental conditions, our model predicts diverse vegetation types and trait mixtures, akin to observations. These results indicate that the outcomes of successional niche differentiation are richer than previously thought and potentially account for mixtures of traits and species observed in forests worldwide.  +
S
To understand the effects of temperature on biological systems, we compile, organize, and analyze a database of 1,072 thermal responses for microbes, plants, and animals. The unprecedented diversity of traits (n = 112), species (n = 309), body sizes (15 orders of magnitude), and habitats (all major biomes) in our database allows us to quantify novel features of the temperature response of biological traits. In particular, analysis of the rising component of within-species (intraspecific) responses reveals that 87% are fit well by the Boltzmann-Arrhenius model. The mean activation energy for these rises is 0.66 +/- 0.05 eV, similar to the reported across-species (interspecific) value of 0.65 eV. However, systematic variation in the distribution of rise activation energies is evident, including previously unrecognized right skewness around a median of 0.55 eV. This skewness exists across levels of organization, taxa, trophic groups, and habitats, and it is partially explained by prey having increased trait performance at lower temperatures relative to predators, suggesting a thermal version of the life-dinner principle-stronger selection on running for your life than running for your dinner. For unimodal responses, habitat (marine, freshwater, and terrestrial) largely explains the mean temperature at which trait values are optimal but not variation around the mean. The distribution of activation energies for trait falls has a mean of 1.15 +/- 0.39 eV (significantly higher than rises) and is also right-skewed. Our results highlight generalities and deviations in the thermal response of biological traits and help to provide a basis to predict better how biological systems, from cells to communities, respond to temperature change.  +