Santa Fe Institute Collaboration Platform

COMPLEX TIME: Adaptation, Aging, & Arrow of Time

Get Involved!
Contact: Caitlin Lorraine McShea, Program Manager, cmcshea@santafe.edu

Search by property

From Complex Time

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Reference material notes" with value " * Translation in cognitive neuroscience remains beyond the horizon, brought no closer by claimed major advances in our understanding of the brain. Nachev ''et al''., propose that adequate inspanidualisation, needed for accurate diagnosis, requires models of far greater dimensionality than has been usual in the field. This necessity arises from the widely distributed causality of neural systems, a consequence of the fundamentally adaptive nature of their developmental and physiological mechanisms.    * A proposal that, in the next quarter century, advances in “cartography” will result in progressively more accurate drafts of a data-led, multi-scale model of normal, abnormal and even adapting, whole human brain structure and function. These draft blueprints will result from analysis of large volumes of neuroscientific and clinical data, by an iterative process of reconstruction, modelling and simulation. ". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Cognitive Regime Shift II - When/why/how the Brain Breaks/RichardFrackowiak  + ( * Translation in cognitive neuroscience r</br>* Translation in cognitive neuroscience remains beyond the horizon, brought no closer by claimed major advances in our understanding of the brain. Nachev ''et al''., propose that adequate individualisation, needed for accurate diagnosis, requires models of far greater dimensionality than has been usual in the field. This necessity arises from the widely distributed causality of neural systems, a consequence of the fundamentally adaptive nature of their developmental and physiological mechanisms.    </br>* A proposal that, in the next quarter century, advances in “cartography” will result in progressively more accurate drafts of a data-led, multi-scale model of normal, abnormal and even adapting, whole human brain structure and function. These draft blueprints will result from analysis of large volumes of neuroscientific and clinical data, by an iterative process of reconstruction, modelling and simulation.</br>f reconstruction, modelling and simulation. )